Return to search

Deformações e isotopias de álgebras de Jordan / Deformations and isotopies of Jordan algebras

Neste trabalho apresentamos a classificação algébrica e geométrica das álgebras de Jordan de dimensões pequenas sobre um corpo $k$ algebricamente fechado de $char k eq 2$ e sobre o corpo dos números reais. A classificação algébrica foi realizada de duas maneiras: a menos de isomorfismos e a menos de isotopias. Enquanto que a classificação geométrica foi feita estudando as variedades de álgebras de Jordan $Jor_$ para $n \\leq 4$ e $JorR_$ para $n\\leq 3$. Provamos que $Jor_$ tem 73 órbitas sob a ação de $GL(V)$ e que é a união dos fechos de Zariski das órbitas de 10 álgebras rígidas, cada um dos quais corresponde a uma componente irredutível. Analogamente, mostramos que $JorR_$ tem 26 órbitas e é a união dos fechos de Zariski das órbitas de 8 álgebras rígidas. Também obtivemos que o número de componentes irredutíveis em $Jor_$ é $\\geq 26$. Construímos ainda três famílias de álgebras rígidas não associativas, não semisimples e indecomponíveis as quais correspondem a componentes irredutíveis de $Jor_$ e $JorR_$ para todo $n\\geq 5$. / In this work we present the algebraic and geometric classification of Jordan algebras of small dimensions over an algebraically closed field $k$ of $char k eq 2$ and over the field of real numbers. The algebraic classification was accomplished in two ways: up to isomorphism and up to isotopy. On the other hand, the geometric classification was obtained studying the varieties of Jordan algebras $Jor_$ for $n\\leq4$ and $JorR_$ for $n\\leq3$. We prove that $Jor_$ has 73 orbits under the action of $GL(V)$ and it is the union of Zariski closures of the orbits of 10 rigid algebras, each of which corresponds to one irreducible component. Analogously, we show that $JorR_$ has 26 orbits and is the union of Zariski closures of the orbits of 8 rigid algebras. Also we obtain that the number of irreducible components in $Jor_$ is $\\geq26$. We construct three families of indecomposable non-semisimple, non-associative rigid algebras which for any $n\\geq5$, correspond to irreducible components of $Jor_$ and $JorR_$.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-10102013-183947
Date04 September 2013
CreatorsMartin, Maria Eugenia
ContributorsKashuba, Iryna
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguageEnglish
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.002 seconds