La production pariétale de bulles de gaz et son impact sur la dynamique de la phase liquide en canal vertical est étudiée numériquement et expérimentalement. Dans un premier temps, un modèle de mélange 2D stationnaire est utilisé pour décrire l’évolution moyenne des panaches de gaz. Grâce à cette approche, un modèle de couche limite a pu être développé et a permis l’identification des nombres adimensionnels pertinents (analogues aux nombres de Rayleigh et de Prandtl pour la thermique) afin de caractériser les écoulements à bulles dispersées. Dans un second temps, un modèle Eulérien-Lagrangien 3D instationnaire, prenant en compte le couplage quadrilatéral (interactions bullesliquide et bullesbulles) est résolu par Simulation Numérique Directe (DNS) et permet ainsi une description plus fine de l’écoulement à l’échelle de la phase dispersée. Enfin, ces approches numériques sont complétées par des mesures de Spectroscopie d’Impédance Electrochimique (SIE) lors de la production de dihydrogène et de dioxygène par électrolyse alcaline. Les modèles d’écoulement proposés ici montrent globalement un très bon accord avec les résultats expérimentaux tirés de la littérature. Les approches homogènes et DNS présentent toutefois quelques disparités sur l’évaluation du taux de vide dans certaines conditions. Parallèlement, les mesures et simulations de SIE ont montré être clairement affectées par les évolutions du panache de bulles, les spectres d’impédance ont notamment mis en évidence une contribution basse fréquence fortement dépendante de la nature de la phase dispersée (taille de bulle et lois de dispersion). Les trois approches (modèle homogène, DNS et SIE) menées conjointement sont donc fortement complémentaires. Elles permettent non seulement une meilleure compréhension de la physique de l’écoulement diphasique, mais offrent aussi une capacité d’analyse de la pertinence des modèles existants tout en ouvrant la voie à leurs futures améliorations / The wall production of gas bubbles and its impact on the liquid dynamics in a vertical channel is studied by means of numerical simulations and experimentation. First, a 2D stationary mixture model is used to describe the averaged plumes evolutions. Through this approach, a boundary layer model has been developed and identified dimensionless numbers (Raleigh-like and Prandtl-like) characteristic of bubbly flows. Secondly, a 3D non-stationary four-way coupled (with bubblesliquid and bubblesbubbles interactions) Eulerian-Lagrangian model is solved by Direct Numerical Simulation (DNS) and allows a finer description of the two-phase flows at bubble-scale. Finally, the numerical methods are completed by Electrochemical Impedance Spectroscopy (EIS) measurements during hydrogen and oxygen production by alkaline electrolysis.The two-phase flow models are in good agreement with experimental results from literature. There are still some disparities between the homogeneous model and the DNS about the void fraction calculation under certain conditions, though. In the meantime, both EIS measurements and simulations were clearly affected by bubbles plume evolutions, the impedance spectra highlighted a low frequency contribution highly sensible to the nature of the dispersed phase (bubble size a dispersion laws). The 3 approaches (homogeneous model, DNS and EIS) used collectively are strongly complementary. They allow not only a better comprehension of the physics of the two-phase flow, but also serve the analysis of existing models while leading the way for further improvements
Identifer | oai:union.ndltd.org:theses.fr/2017GREAI030 |
Date | 18 July 2017 |
Creators | Schillings, Jonathan |
Contributors | Grenoble Alpes, Deseure, Jonathan |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0011 seconds