Return to search

Investigation expérimentale du décollement dans l'aspirateur d'une turbine bulbe

La présente thèse propose une étude expérimentale du décollement dans le diffuseur d’un modèle de turbine hydroélectrique bulbe. Le décollement se produit quand la turbine est opérée à forte charge et il réduit la section effective de récupération du diffuseur. La diminution de la performance du diffuseur à forte charge engendre une baisse brusque de l’efficacité de la turbine et de la puissance extraite. Le modèle réduit de bulbe est fidèle aux machines modernes avec un diffuseur particulièrement divergent. Les performances de la turbine sont mesurées sur une large gamme de points d’opération pour déterminer les conditions les plus intéressantes pour l’étude du décollement et pour étudier la distribution paramétrique de ce phénomène. La pression est mesurée le long de l’aspirateur par des capteurs dynamiques affleurants alors que les champs de vitesse dans la zone de décollement sont mesurés avec une méthode PIV à deux composantes. Les observations à la paroi sont pour leur part faites à l’aide de brins de laine. Pour un débit suffisant, le gradient de pression adverse induit par la géométrie du diffuseur affaiblit suffisamment la couche limite, entraînant ainsi l’éjection de fluide de la paroi le long d’une large enveloppe tridimensionelle. Le décollement instationnaire tridimensionnel se situe dans la même zone du diffuseur indépendamment du point d’opération. L’augmentation du débit provoque à la fois une extension de la zone de décollement et une augmentation de l’occurrence de ses manifestations. La position et la forme du front de décollement fluctue significativement sans périodicité. L’analyse topologique et celle des tourbillons des champs de vitesse instantanés montrent une topologie du front de décollement complexe qui diffère beaucoup d’une réalisation à l’autre. Bien que l’écoulement soit turbulent, les tourbillons associés aux foyers du front sont clairement plus gros et plus intenses que ceux de la turbulence. Cela suggère que le mécanisme d’enroulement menant aux tourbillons du décollement est clairement distinct des mécanismes de la turbulence. / This thesis presents an experimental investigation of flow separation inside the diffuser of a small scale model of a bulb turbine. The flow separation occurs when the turbine is operated at high discharge and it reduces the diffuser effective area. In the case of bulb turbines, the kinetic energy recovered by the diffuser represents an important part of the total net head available for the runner energy extraction. The decrease of the diffuser efficiency leads to a sudden drop in the turbine efficiency and in the power extraction. The small scale model is faithful to modern turbines with a particularly divergent diffuser. The turbine performances are measured in a large range of operating conditions in order to select the most interesting ones and to investigate the parametric range of the phenomena. The pressure is measured along the diffuser by flush mounted dynamic sensors while the velocity fields inside the separation zone are obtained by a two-component PIV method. Separation observations on the wall are done using tufts. For a sufficient flow rate, the adverse pressure gradient induced by the diffuser geometry sufficiently weakens the boundary layer, thus leading to fluid ejection from the wall along a large three-dimensional envelope. The three-dimensional unsteady flow separation zone is located in the same area independently of the operating points. The flow rate increase leads to a wider separation zone occurring more frequently. The separation front fluctuates significantly both in location and in shape with no periodicity. Topological and vortex analyses on instantaneous velocity fields show a complex separation front topology which differs greatly from one realisation to another. Despite the highly turbulent flow, the separation front vortices are definitely bigger and more intense than turbulent vortices. It suggests that the roll-up mechanisms leading to separation surface vortices appear to be distinct from those of turbulent vortices.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/27058
Date24 April 2018
CreatorsDuquesne, Pierre
ContributorsMaciel, Yvan, Deschênes, Claire
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxi, 232 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0025 seconds