Return to search

Interfaces Cerveau-Machines basées sur l'imagination de mouvements brefs : vers des boutons contrôlés par la pensée

Les Interfaces Cerveau Machine (ICM) sont des dispositifs d'un type nouveau permettant la communication directe entre le cerveau d'un utilisateur et une machine. De tels dispositifs peuvent être réalisés grâce à la mesure non-invasive d'informations provenant du cortex par électroencéphalographie (EEG). Un des enjeux principaux du domaine est de réussir à extraire en temps réel, à partir d'une source d'information très limitée et bruitée, un signal de commande robuste et suffisamment complexe pour permettre le contrôle d'un programme ou d'un effecteur. Dans cette thèse nous avons contribué à l'amélioration des ICM sur trois points. Tout d'abord, nous avons exploré la possibilité d'augmenter la résolution spatiale de l'EEG en utilisant des méthodes permettant de construire l'activité corticale en temps réel. D'autre part, inspirés par une ICM utilisant l'imagination motrice des pieds pour envoyer une commande unique, nous nous sommes intéressés aux signaux produits par l'imagination de mouvements brefs. Cela nous a permis de développer un nouveau type d'ICM appelé bouton commandé par la pensée. Une telle ICM permet à l'utilisateur d'envoyer, de façon asynchrone, plusieurs commandes en imaginant différents mouvements. Finalement, nous avons développé une méthode, basée sur la théorie des bandits stochastiques, pour sélectionner automatiquement et efficacement le mouvement imaginé le plus discernable de l'état de repos et permettant ainsi le meilleur contrôle de l'ICM. En parallèle, nous avons développé une boîte à outils Matlab qui automatise l'ajustement des paramètres et la comparaison des différentes méthodes utilisées pour réaliser une ICM.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00838704
Date04 July 2012
CreatorsFruitet, Joan
PublisherUniversité de Nice Sophia-Antipolis
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0022 seconds