Dans ce rapport, un modèle électromagnétique dédié à l’analyse de la diffraction de cibles métalliques placées en milieux forestiers est développé. Le modèle est basé sur une formulation hybride (surface/volume) de la méthode des moments. Le modèle est d’abord développé pour traiter le cas d’une cible métallique placée en espace libre en se basant sur la formulation surfacique de l’équation intégrale du champ électrique. Ensuite, le modèle est modifié afin de prendre en compte la présence du sol en se basant sur la méthode des images couplée aux coefficients de réflexion de Fresnel. Enfin, le code obtenu est couplé à un modèle précédemment développé au laboratoire permettant d’analyser de larges zones forestières. Ce modèle est basé sur la formulation volumique de l’équation intégrale du champ électrique couplée à la méthode CBFM (Characteristics Basis Functions Method). Le code final obtenu permet de traiter le cas d’une cible métallique placée dans une large zone forestière. Le modèle réalisé est implémenté sous MATLAB et Fortran afin de comparer ses résultats avec ceux donnés par le logiciel commercial FEKO. Les résultats sont comparés pour plusieurs cas de figure: espace libre, avec sol et scène complexe. De plus, le code est utilisé afin de mettre en évidence les différents paramètres qui rentrent en jeu dans le mécanisme de diffraction. Enfin, une validation expérimentale réalisée en collaboration avec CCRM (Centre Commun de Ressources en Micro-ondes de Marseille) est présenté. Une mesure du champ diffractée est réalisée sur des maquettes à échelle réduite (1/25) et les résultats obtenus sont comparés avec ceux donnés par notre modèle. / In this report, a model for the analysis of the scattering of metallic target placed in forested area is presented. The developed model is based on a hybrid (surface/volume) formulation of the method of moments. First, a model based on the surface formulation of the electric field integral equation is developed for the case of a metallic target placed in free space. The model is then modified in order to take into account the presence of a ground by using a complex image method coupled with the Fresnel reflection coefficients. Finally, the obtained code is coupled with a model treating the case of large forest areas that was previously developed in the laboratory. This model is based on a volume formulation of the electric field integral equation coupled with the Characteristics Basis Functions Method. The final hybrid model treats the case of metallic object placed in a large forested area. The model is then implemented on MATLAB and Fortran in order to compare its results with those of the commercial software FEKO. The results were compared different cases: free space, above ground and inside a forested area. The code was also used in order to different parameters affecting the diffraction mechanism. Finally, a numerical validation conducted in collaboration with CCRM (Centre Commun de Ressources en Micro-ondes de Marseille) is presented. A measurement complain of the diffracted field was achieve on scaled models (1/25) and the measurements were compared with the results given by the developed model.
Identifer | oai:union.ndltd.org:theses.fr/2017PA066415 |
Date | 20 October 2017 |
Creators | Hettak, Lydia |
Contributors | Paris 6, Casaletti, Massimiliano, Roussel, Hélène, Mittra, Raj |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0031 seconds