Return to search

Sur l’application de la structure de graphes pour le calcul automatique de nombres de reproduction dans les modèles à compartiments déterministes

En basant l'analyse des modèles épidémiologiques sur leur représentation graphique plutôt que sur leurs équations différentielles, il est possible de mettre en évidence plusieurs concepts importants à l'aide des composantes d'un hypergraphe. On décrit une manière formelle de créer automatiquement un système d'équations différentielles à partir de ces composantes et on adapte ensuite la définition du produit cartésien pour les hypergraphes décrits, ce qui permet la fusion de modèles.

À l'aide d'un algorithme qui ajoute automatiquement de nouvelles composantes à l'hypergraphe, il est possible d'isoler virtuellement certains individus, afin d'expliciter le calcul de nombres de reproduction. On montre ensuite que la forme des équations différentielles créées admettent une solution unique et que l'algorithme d'ajout aux hypergraphes est stable au niveau de la structure et de la dynamique des hypergraphes.

On trouve que la méthode décrite pour le calcul des nombres de reproduction permet une meilleure prédiction de la croissance de l'épidémie que le calcul standard \(\mathcal{R}_t = \mathcal{R}_0 \cdot S / N\) et que le calcul de \(\mathcal{R}_0\) est très similaire aux résultats trouvés à l'aide de la matrice de prochaine génération, en plus d'être plus simple à mettre en place et d'offrir une justification plus robuste.

On conclue ce mémoire en décrivant sommairement un processus d'apprentissage automatique des paramètres dans les modèles à compartiments, afin de permettre une calibration de modèles plus rapide. L'apprentissage machine peut être intégré en faisant appel à la librarie torchdiffeq, qui implémente les équations différentielles ordinaires neuronales en utilisant Pytorch. / By basing the analysis of epidemiological models on their graphical representation rather than on their differential equations, it is possible to highlight a few key concepts by using the components of a hypergraph. We give a formal way to automatically create a system of differential equations by using these components and we then adapt the definition of the cartesian product for the defined hypergraphs, which permits the merging of models.

Using an algorithm which automatically adds new components to the graph, we can virtually isolate a few individuals to explicitly compute the reproduction numbers. We then show that the resulting differential equations allow for a unique solution and that the modification algorithm is stable for the structure and dynamics of the hypergraphs.

We find that the described method for the computation of reproduction numbers gives a more accurate prediction of the growth of the epidemic than the standard computation \(\mathcal{R}_t = \mathcal{R}_0 \cdot S/N\) and that the computation of \(\mathcal{R}_0\) is very similar to the results found using the next generation matrix method, as well as being simpler to integrate into models and offering a more robust justification.

We conclude this thesis with a brief outline of an automatic learning process for the parameters in compartmental models, which allows a faster calibration of epidemiological models. The implementation of machine learning can be done through the torchdiffeq library, which applies the theory of neural ordinary differential equations using Pytorch.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/32230
Date04 1900
CreatorsSimard, Alexandre
ContributorsRish, Irina, Bélair, Jacques
Source SetsUniversité de Montréal
Languagefra
Detected LanguageFrench
Typethesis, thèse
Formatapplication/pdf

Page generated in 0.0027 seconds