Return to search

Réduction fuchsienne et modèles stellaires / Fuchsian reduction and stellar models

L'objet de cette thèse est l'étude d'un système différentielle non linéaire issu d'un modèle stellaire. Après réduction et changements d'inconnues et variables, on se ramène à un second membre analytique en chacune des variables du problème ainsi qu'en des fonctions bien choisies. Nous montrons ensuite que les solutions peuvent s'écrire dans un espace de séries absolument convergentes. Ce théorème d'existence servira alors de brique élémentaire à une méthode de réduction de type Fuchsienne. L'objectif étant d'obtenir un développement sous forme de série faisant apparaître de manière explicite les différentes constantes arbitraires inhérentes à ce type d'équations. / The object of this thesis is the study of a non linear differential equation stemming from a stellar model. After reduction and unknowns changes and variables, we achieve to an analytic second member in each of the problem variables and well chosen functions. Then we show that the solutions can be described in a space of absolute convergent series. This theorem of existence will be used as an elementary brick to a nearby method of Fuchsian reduction. The objective was to obtain a development which elicits arbitrary various constants inherent to this type of equations.

Identiferoai:union.ndltd.org:theses.fr/2013REIMS046
Date26 June 2013
CreatorsPonsignon, Jean-Charles
ContributorsReims, Kichenassamy, Satyanad
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0037 seconds