A cause du développement du smart farming, des études sont à mener sur la distribution de l’instrumentation pour mesurer l’état hydrique du sol en vue de contrôler l’irrigation. Dans le cadre du projet IRRIS, nous réalisons un capteur d’humidité du sol intelligent. Nous allons tout d’abord réaliser le corps d’épreuve de ce capteur. Nous choisissons une mesure capacitive pour obtenir un capteur réactif malgré un coût de réalisation faible. Le corps est cylindrique pour pouvoir être inséré facilement dans le sol. Les électrodes sont réalisées par dépôt électrochimique de cuivre sur ce cylindre plastique. Nous concevons ensuite l’électronique de mesure associée à ce corps. Pour cela, nous comparons deux solutions, l’une analogique et l’autre logicielle. Puis nous assemblons notre capteur suivant deux modes, le multi capteur ou le mono capteur. Nous réalisons à cette étape la création du réseau de capteurs à l’aide de communication sans fil située dans la bande ISM 868MHz et nous la caractérisons. Enfin, nous observons les résultats de trois campagnes de mesures dans des champs cultivés pour valider le fonctionnement sur différents types de sols et de cultures. Ces travaux aboutissent donc à la création d’un capteur permettant la mesure de l’humidité du sol avec un coût réduit par rapport aux capteurs industriel déjà existant. Les expérimentations sur site montrent sa facilité d’insertion ainsi que son bon fonctionnement. / Owing to the development of the smart farming, some new studies need to be lead on a distributed instrumentation to measure soil moisture to control the irrigation.In the project IRRIS context, we realize a smart soil moisture sensor. First, we have to realize the sensing element of this sensor. We choose a capacitive detection to get a reactive sensor despite low cost. The body is a cylinder to be easily buried in the soil. The electrodes are made by electrochemical deposition on the plastic tube. Then, we design the measurement electronic. We compare two solutions, one with discrete components and the other software on embedded microcontroller. We submit those electronics at thermic variations to observe their comportment to create the law of compensation. Next we assemble the sensor according to two ways. The first, the multi sensor, forces the depths of sensing but reduces the costs by pooling the measurement electronic. The second, the mono sensor, frees the choice of depth but multiplies the number of sensors. We create at this step the sensor network thanks a wireless communication placed on 868MHz, an ISM band that we characterize in terms of range depending on the flow rate to optimize this communication. Finally, we observe the results of three measurement campaigns to validate the operating for different soil and cultures.This study ends in the realization of a sensor to measure soil moisture with a reduced cost relative to the industrial sensor on the market. Experiments prove its ease of use as well as its proper functioning.
Identifer | oai:union.ndltd.org:theses.fr/2017ISAT0031 |
Date | 28 September 2017 |
Creators | Roux, Julien |
Contributors | Toulouse, INSA, Fourniols, Jean-Yves |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds