Les vents et les jets sont un des phénomènes les plus répandu et spectaculaire en astrophysique des hautes énergies. En effet, une variété d'objets astrophysiques exhibent des écoulements aussi bien sous forme de vents que de jets fortement collimatés. Ils sont observés dans les étoiles jeunes, les noyaux actifs de galaxies (AGN), les étoiles à neutrons et les étoiles de la séquence principale. Cependant, malgré l'abondance des jets en astrophysique, le problème de la formation et de la collimation de ces écoulements reste ouvert. Différents modèles sont proposés pour résoudre ce problème. La plupart de ces modèles sont développés dans la limite newtonienne. Nous avons, dans cette thèse, élaboré des modèles hydrodynamiques et magnétohydrodynamiques en relativité générale pour analyser les différents mécanismes d'accélération et de collimation des écoulements aussi bien relativistes que classiques. Nous avons étudié les solutions d'écoulements purement hydrodynamique sphérique avec une équation d'état polytropique généralisée. Nous nous sommes intéressés aux effets de changement de l'état de la matière dans les écoulements sur l'accélération thermique, lorsqu'elle subit des grandes variations de température. Nous avons montré qu'avec notre nouvelle équation d'état, les effets de la gravité et thermique sont couplés, permettant une plus grande efficacité de l'accélération du vent. Nous avons aussi montré la nécessité de l'utilisation de ce nouveau polytrope plus cohérent dans le traitement des écoulements relativistes polytropiques. Dans la deuxième partie de la thèse, nous avons développé un modèle d'écoulement axial magnétisé 2.5D. La température élevée du plasma dans la couronne centrale due à la gravité élevée et la proximité de l'axe de rotation nous ont permis de négliger, dans un premier temps, les effets du cylindre de lumière comparativement aux effets thermiques. Dans ce cadre, nous avons montré que les effets relativistes favorisent l'accélération thermique au détriment de la collimation magnétique. Nous avons aussi montré l'importance de l'expansion initiale du jet sur l'efficacité de l'accélération du jet dans la partie basse. D'autre part, nous avons étudié les effets de la rotation relativiste sur la collimation du jet. Nous avons aussi utilisé le modèle pour déduire quelques différences entres les propriétés intrinsèques des jets d'AGN de type FRI et de FRII. Nous avons trouvé que les jets des FRI se caractérisés par une faible vitesse de rotation à la base et qu'asymptotiquement, ils sont confinés par le milieu ambiant. Par contre, les jets des FRII sont caractérisés par une vitesse de rotation à la base plus élevée que celle des jets de FRI, qui reste cependant sub-keplerienne. De plus, les jets des FRII s'auto-collimatent par leur propre champ magnétique. Nous avons développé un troisième modèle de jet dans le cas des rotateurs relativistes. En premier lieu, ce modèle nous a permis de mieux traiter les jets accélérés par le flux de Poynting contrairement au modèle précédent. Nous avons aussi étudié les effets du cylindre de lumière sur la collimation du jet et confirmé qu'il tend à décollimater ce dernier. D'autre part, nous avons trouvé que, dans les solutions caractérisés par un cylindre de lumière proche de la surface d'Alfvén, la rotation relativiste dans ces jets limite l'accélération de ces derniers. En effet, dans les solutions que nous avons étudiées, les vitesses poloïdales obtenues restent faibles, de l'ordre de $0.6c$. Nous avons aussi amorcé un code de simulation numérique d'écoulements relativistes utilisant la bibliothèque LORENE. Dans la thèse nous avons commencé à tester le code dans le cas simple de vents purement hydrodynamiques sphériques.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00008067 |
Date | 13 December 2004 |
Creators | Meliani, Zakaria |
Publisher | Université Paris-Diderot - Paris VII |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0023 seconds