La forêt boréale représente environ le tiers des biomes forestiers du monde et occupe la deuxième plus grande superficie de végétation derrière les forêts tropicales. Compte tenu de sa grande répartition géographique, la forêt boréale régule les flux d'eau sur de vastes zones et a donc un impact sur la climatologie et l'hydrologie à l'échelle régionale et mondiale. Il est donc crucial de comprendre les interactions entre cet écosystème et l'atmosphère. De nombreuses études ont porté sur l'évapotranspiration des forêts boréales, mais seule une poignée d'entre elles se sont intéressées à la dynamique du fractionnement de l'évapotranspiration en transpiration du couvert forestier, évaporation de l'eau interceptée et évapotranspiration du sous-étage forestier à une échelle temporelle fine. L'objectif principal de cette thèse est d'analyser la dynamique de l'évapotranspiration, en particulier la transpiration du couvert forestier et l'évaporation de l'eau interceptée, dans une forêt boréale humide de l'est du Canada. L'approche est basée sur des observations in situ originales et des sorties de modèles du Canadian Land Surface Scheme (CLASS, tourné en mode 'standalone'), à la Forêt Montmorency (47°17′18″N ; 71°10′05.4″W) de l'Université Laval, Québec, Canada. Ce site est classé comme une forêt boréale humide avec un indice d'aridité de 0,57 et des précipitations annuelles moyennes de 1583 mm (60% de pluie, 40% de neige). Cette région est sous l'influence d'un climat continental subarctique (classification Köppen Dfc), avec une température annuelle moyenne de 0,5℃ et une saison de croissance s'étendant de juin à octobre. Le dispositif expérimental est composé de deux sites avec des peuplements de sapins baumiers à différents niveaux de maturité (stade juvenile (site 'Juvenile') et stade gaule (site 'Sapling')), tous deux équipés d'une tour à flux. Le peuplement le plus mature du site Juvenile a un indice moyen de surface foliaire plus élevé (3,6) que celui du site Sapling (2,9). L'évapotranspiration des peuplements de sapins baumiers a été mesurée par un système de covariance des tourbillons installé sur la tour à flux, tandis que la transpiration du couvert forestier et son bilan hydrique ont été mesurés à l'intérieur de trois parcelles de 400 m² situées à proximité de chaque tour à flux. L'analyse se concentre sur les saisons de croissance de 2017 et 2018. Cette thèse est divisée en trois objectifs spécifiques. Le premier objectif spécifique est d'analyser la dynamique de la transpiration du couvert forestier dans des conditions transitoires d'humidité de la canopée. La transpiration a été obtenue à partir de mesures de flux de sève à l'aide de la méthode de dissipation thermique sur 12 arbres échantillonnés à chaque site. Les incertitudes liées au processus de passage de l'échelle de l'arbre à celle du peuplement ont été quantifiées, en particulier grâce à l'étalonnage en laboratoire des capteurs de flux de sève réalisé sur des échantillons de sapin baumier. Les résultats ont montré que la transpiration diminue lorsque la couverture de la canopée est en phase d'humidification, et augmente lorsqu'elle est en phase de séchage. Le rayonnement net, le déficit de pression de vapeur et la présence de gouttes de pluie sur les aiguilles des arbres jouent tous un rôle dans la régulation de la transpiration des arbres. À l'échelle saisonnière, la transpiration du couvert forestier a représenté tout au plus 47% de l'évapotranspiration totale. Ces résultats suggèrent que l'évaporation de l'eau interceptée par la canopée est un terme important du bilan hydrique de la canopée. Ainsi, dans la deuxième partie de la thèse, nous avons analysé la dynamique de l'interception de la canopée autour d'événements pluvieux de l'échelle de la demie-heure jusqu'à la saison de croissance dans son ensemble. Afin de mesurer le bilan hydrique de la canopée, des dispositifs de mesure de la précipitation et du débit s'étalant le long des troncs ont été déployés, de même qu'un dispositif mesurant la compression d'un tronc d'arbre en continu. Cette nouvelle technique, qui permet d'associer la compression d'un arbre à l'eau interceptée, n'avait jusqu'alors jamais été testée au cours d'une saison de croissance complète. Outre l'estimation des précipitations interceptées, les résultats du bilan hydrique de la canopée et le système de suivi de la compression d'un tronc d'arbre ont également été utilisés pour estimer le stockage maximal d'eau dans la canopée. Le stockage d'eau maximum de la canopée estimé par la méthode du bilan hydrique de la canopée s'est révelé en moyenne de 1,6 mm (≈ 0, 49 mm par unité d'indice de surface foliaire) et de 2,2 mm en utilisant le système de suivi de la compression d'un tronc d'arbre. Au cours des deux saisons de croissance étudiées, l'évaporation de l'eau interceptée a représenté entre 16% et 27% de l'évapotranspiration totale. Enfin, pour le troisième objectif spécifique de cette thèse, nous nous sommes intéressés à la capacité du modèle CLASS à reproduire les observations du cheminement vertical de l'eau à travers la canopée forestière. Malgré quelques légères différences entre les observations et les simulations, CLASS s'est avéré capable de simuler avec précision le fractionnement de l'évapotranspiration observée dans des conditions de canopée sèche et humide. Les performances se sont avérées encore meilleures lorsque la capacité de stockage de la canopée dans le modèle a été supposée égale aux observations. Les principaux écarts entre les observations et les sorties du modèle ont principalement été causés par des différences de temps de séchage de la canopée observés vs simulés. Cette thèse fournit un examen détaillé de l'évapotranspiration en forêt boréale humide, en mettant l'accent sur les transitions entre les conditions sèches et humides de la canopée. Les résultats obtenus sont importants pour le développement de modèles hydroclimatiques réalistes et performants au Canada et dans d'autres régions froides du monde. / Boreal forests account for around a third of the world's forest biomes and occupy the second largest vegetated area after tropical forests. Given its large geographical distribution, the boreal forest regulates water fluxes over vast areas and thus impacts climatology and hydrology at regional and global scales. Understanding the interactions between this ecosystem and the atmosphere is therefore crucial. Many studies have investigated the evapotranspiration of boreal forests, but only a handful have focused on the dynamics of evapotranspiration partitioning into overstory transpiration, wet canopy evaporation, and understory evapotranspiration on a fine temporal scale. The main objective of this thesis is to analyze the dynamics of evapotranspiration partitioning, particularly overstory transpiration and wet canopy evaporation in a humid boreal forest of eastern Canada. The approach is based on field observations and model outputs from the Canadian Land Surface Scheme (CLASS, run in offline mode), at the Montmorency Forest (47°17′18″N; 71°10′05.4″W) of Université Laval, Québec, Canada. This site is classified as a humid boreal forest with an aridity index of 0.57 and mean annual precipitation of 1583 mm (60% rain, 40% snow). This region is under the influence of a continental subarctic climate (Köppen classification Dfc), with a mean annual temperature of 0.5℃ and the growing season stretching from June to October. The experimental setup consists of two sites with balsam fir stands at different levels of maturity (Juvenile and Sapling), both equipped with eddy covariance flux tower. The more mature stand at the Juvenile site has a higher mean leaf area index (3.6) than the Sapling site (2.9). The evapotranspiration of the balsam fir stands was monitored by an eddy covariance system installed on the flux tower whereas the overstory transpiration and canopy water balance were measured inside three 400-m² plots located in the vicinity of each flux tower. The analysis focuses on the 2017 and 2018 growing seasons. This thesis is divided into three specific objectives. The first specific objective is to analyze the dynamics of overstory transpiration under transient canopy wetness conditions. Overstory transpiration was obtained from sap flow measurements using the thermal dissipation method on 12 sampled trees at each site. Uncertainties arising in the upscaling process from tree to stand scale were quantified, in particular through laboratory calibration of sap flow sensors performed with balsam fir trunk samples. The results showed that transpiration decreases when the canopy cover is in its wetting phase, and increases when in the drying phase. Net radiation, vapor pressure deficit, and the presence of rain drops on the tree needles all play a role in regulating tree transpiration. At the seasonal scale, overstory transpiration represented at most 47% of the total evapotranspiration. These results suggest that wet canopy evaporation is a significant term of the canopy water balance, which is the subject of the second specific objective. Hence, in the second part of the thesis, we analyzed the dynamics of canopy interception around rainfall events from half-hourly to seasonal scales. In order to measure the canopy water balance, throughfall and stemflow measurement devices were deployed, along with the stem compression approach. This new technique, which aims to weight a tree continuously to determine the amount of intercepted water, had never been tested for a full growing season. Apart from estimating the intercepted rainfall, results from canopy water balance and stem compression approach were also used to estimate the canopy maximum water storage. The maximum canopy water storage estimated using the canopy water balance method was on average 1.6 mm (≈ 0.49 mm per unit leaf area index) and 2.2 mm using the stem compression method. During the two growing seasons under study, the wet canopy evaporation contributed between 16% and 27% of the total evapotranspiration. Finally, for the third specific objective of this thesis, we were interested in the ability of the Canadian land surface scheme (CLASS) model to reproduce the observed circulation of water through the forest canopy. Despite some slight differences between the observations and simulations, CLASS is able to accurately simulate evapotranspiration partitioning during dry and wet canopy conditions, particularly after adjusting the maximum canopy water storage in line with that observed at the site. The discrepancy between observations and model outputs is mostly a consequence of differences in canopy drying times. Overall, CLASS is able to simulate ratios of evapotranspiration component to total evapotranspiration similar to those derived from observations at the more mature stand, but overestimates these ratios at the younger stand. This thesis provides a detailed examination of the evapotranspiration partitioning, with a focus on transitions from dry to wet and from wet to dry canopy conditions. These informations are important for the development of accurate hydrological models in Canada and in other cold regions around the world.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/68750 |
Date | 02 February 2024 |
Creators | Hadiwijaya, Bram |
Contributors | Pepin, Steeve, Nadeau, Daniel |
Source Sets | Université Laval |
Language | English |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xxiii, 128 pages), application/pdf |
Coverage | Québec (Province) -- Forêt d'enseignement et de recherche Montmorency. |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.1507 seconds