This thesis investigates the performance of Mask R-CNN when utilizing transfer learning on a small dataset. The aim was to instance segment eyeglass lenses as accurately as possible from self-portrait images. Five different models were trained, where the key difference was the types of eyeglasses the models were trained on. The eyeglasses were grouped into three types, fully rimmed, semi-rimless, and rimless glasses. 1550 images were used for training, validation, and testing. The model's performances were evaluated using TensorBoard training data and mean Intersection over Union scores (mIoU). No major differences in performance were found in four of the models, which grouped all three types of glasses into one class. Their mIoU scores range from 0.913 to 0.94 whereas the model with one class for each group of glasses, performed worse, with a mIoU of 0.85. The thesis revealed that one can achieve great instance segmentation results using a limited dataset when taking advantage of transfer learning. / Denna uppsats undersöker prestandan för Mask R-CNN vid användning av överföringsinlärning på en liten datamängd. Syftet med arbetet var att segmentera glasögonlinser så exakt som möjligt från självporträttbilder. Fem olika modeller tränades, där den viktigaste skillnaden var de typer av glasögon som modellerna tränades på. Glasögonen delades in i 3 typer, helbåge, halvbåge och båglösa. Totalt samlades 1550 träningsbilder in, dessa annoterades och användes för att träna modellerna. Modellens prestanda utvärderades med TensorBoard träningsdata samt genomsnittlig Intersection over Union (IoU). Inga större skillnader i prestanda hittades mellan modellerna som endast tränades på en klass av glasögon. Deras genomsnittliga IoU varierar mellan 0,913 och 0,94. Modellen där varje glasögonkategori representerades som en unik klass, presterade sämre med en genomsnittlig IoU på 0,85. Resultatet av uppsatsen påvisar att goda instanssegmenteringsresultat går att uppnå med hjälp av en begränsad datamängd om överföringsinlärning används.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-306909 |
Date | January 2021 |
Creators | Norrman, Marcus, Shihab, Saad |
Publisher | KTH, Matematisk statistik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-SCI-GRU ; 2021:366 |
Page generated in 0.0023 seconds