Perioperative hypotension corresponds to critically low blood pressure events during the pre, intra and postoperative periods. It is a common side effect of general anaesthesia and is strongly associated with an increased risk of postoperative complications, such as acute kidney injury, myocardial injury and in the worst case death. Early treatment of hypotension, preferably even before onset, is crucial in order to reduce the risk and severity of its associated complications. This work explores methods for predicting the onset of hypotension which could serve as a warning mechanism for clinicians managing the patient’s hemodynamics. More specifically, we present methods using only the arterial blood pressure curve to predict two different definitions of hypotension. The presented methods are based on a Convolutional Neural Network (CNN) trained on data from patients undergoing high-risk surgery. The experimental results show that our network can predict hypotension with 70% sensitivity and 80% specificity 5 minutes before onset. The prediction performance is then quickly reduced for longer prediction times, resulting in 60% sensitivity and 80% specificity 15 minutes before onset. / Perioperativ hypotension motsvarar perioder av kritiskt lågt blodtryck före, under och efter operation. Det är en vanlig bieffekt av generell anestesi och är starkt associerad med ökat risk av postoperativa komplikationer, så som akut leverskada, myokardskada och i värsta fall dödsfall. Tidig behandling av hypotension, helst innan perioden börjar, är avgörande för att minska risken och allvarlighetsgraden av postoperativa komplikationer. Det här arbetet utforskar metoder för att förutspå perioder av hypotension, vilket skulle kunna används för att varna vårdpersonal som ansvarar för patientens hemodynamiska övervakning. Mer specifikt så presenteras metoder som endast använder artärblodtryck för att förutspå två olika definitioner av hypotension. Metoderna som presenteras är baserade på ett Convolutional Neural Network (CNN) som tränats på data från patienter som genomgår högriskoperation. De experementella resultaten visar att våran modell kan förutspå hypotension med 70% sensitivitet och 80% specificitet 5 minuter i förväg. Förmågan att förutspå hypotension avtar sedan snabbt för längre prediktionstider, vilket resulterar i 60% sensitivitet och 80% specificitet 15 minuter i förväg.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-312931 |
Date | January 2022 |
Creators | Zandpour, Navid |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2022:95 |
Page generated in 0.0021 seconds