Tato práce se zabývá zapojením mezivětného kontextu v neuronovém strojovém překladu (NMT). Dnešní běžné NMT systémy překládají jednu zdrojovou větu na jednu cílovou větu, bez jakéhokoliv ohledu na okolní text. Tento přístup je nedostačující a neodpovídá způsobu práce lidských překladatelů. Pro mnoho jazykových párů je dnes za splnění určitých (přísných) podmínek výstup NMT nerozeznatelný od lidského překladu. Jedna z těchto podmínek je, že hodnotitelé skórují přeložené věty nezávisle, bez znalosti kontextu. Při hodnocení celých dokumentů je výstup NMT stále hodnocen hůře, než lidský překlad, i v případech, kdy byl na úrovni jednotlivých vět preferován. Tato zjištění jsou motivací pro výzkum zapojení kontextu na úrovni dokumentu v NMT, je totiž možné, že na úrovni vět již není mnoho prostoru ke zlepšení, alespoň pro jazykové páry a domény bohaté na trénovací data. Tato práce shrnuje současné přístupy zapojení kontextu do překladu, několik z nich je implementováno a vyhodnoceno v rámci obecné překladové kvality i na překladu specifických fenoménů souvisejících s kontextem. Pro zhodnocení kvality jednotlivých systému byla ručně vytvořena testovací sada pro překlad z anglického do českého jazyka.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:403201 |
Date | January 2019 |
Creators | Jon, Josef |
Contributors | Fajčík, Martin, Smrž, Pavel |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | English |
Detected Language | Unknown |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0015 seconds