Ziel dieser Arbeit war es, Beziehungen zwischen den kristallchemischen Eigenschaften und dem beobachteten anomalen Verhalten im spezifischen elektrischen Widerstand (nicht-magnetischer Kondo-Effekt) aufzuzeigen und zusammenhängend zu interpretieren. Verbindungen, an denen dieser Effekt beobachtet wurde, werden aus einem Übergangs-, oder Actinidmetall mit je einem Vertreter der 15. (Pniktogene) und 16. Gruppe (Chalkogene) des Periodensystems gebildet und kristallisieren im PbFCl-Strukturtyp. Da zu ternären Actinidmetall-Pniktid-Chalkogeniden (z.B. ThAsSe, UPS) nur sehr wenige chemische und kristallographische Informationen existieren, wurden in dieser Arbeit umfassende Untersuchungen zur Kristallchemie ternärer Phasen aus den Systemen M-Pn-Q (M = Zr, Hf, La-Ce; Pn = As, Sb; Q = Se, Te durchgeführt. Der Schwerpunkt lag dabei auf der strukturellen Lokalisierung der beobachteten Widerstandsanomalie und der Erarbeitung chemisch-physikalischer Eigenschaftsbeziehungen. Die Darstellung der untersuchten ternären Phasen in Form von Einkristallen gelang über exothermen Chemischen Transport mit Jod. Da die erhaltenen Kristalle bis zu mehreren Millimetern groß sind, konnten an ein und demselben Kristallindividuum sowohl die stoffliche Charakterisierung (EDXS, WDXS, ICP-OES, LA-ICP-MS, CIC) und die strukturelle Charakterisierung, als auch die Messung der physikalischen Eigenschaften erfolgen. Es konnte u.a. gezeigt werden, dass ZrAs1,4Se0,5 und HfAs1,7Se0,2 ein ähnlich ungewöhnliches Verhalten im temperaturabhängigen elektrischen Widerstand zeigen, welches bereits an Thorium-Arsenid-Seleniden und Uran-Phosphid-Sulfiden beobachtet wurde. Desweiteren gelang es den beobachteten Verlauf im elektrischen Widerstand, mit seinem Minium bei etwa T = 15 K, auf intrinsische strukturelle Merkmale in der anionischen Arsen-Teilstruktur zurückzuführen. / The aim of this work was, to evaluate and interpret a relationship between the crystal-chemical properties and the observed unusual behavior in the electrical resistivity (non-magnetic Kondo-effect). Compounds, which show such an effect, are formed by a transition- or actinide-metal with both a group 15 element and a group 16 element of the periodic table. All these compounds crystallizing in the PbFCl type of structure. Because of less crystallographic and chemical information about actinide-metal-pnictide-chalcogenides (i.e. ThAsSe, UPS), intensive investigation were made concerning the crystal-chemistry of ternary phases of the systems M-Pn-Q (M = Zr, Hf, La-Ce; Pn = As, Sb; Q = Se, Te. Our studies were focused on the structurally localization of the observed anomaly in the electrical resistivity and the evaluation of chemical-physical relations of properties. The synthesis of the investigated ternary phases was realized by exothermically Chemical Transport with iodine as transport agent. The dimension of the synthesized crystals allowed a chemical (EDXS, WDXS, ICP-OES, LA-ICP-MS, CIC) and structurally characterization, as well as a determination of the physical properties on one large single crystal. It could be shown, that ZrAs1,4Se0,5 and HfAs1,7Se0,2 reveal a similar unusual behavior in the temperature dependent electrical resistivity, as it was observed in thorium-arsenide-selenides and uranium-phosphide-sulphides. In conclusion, the non-magnetic Kondo-effect, which was found in the low-temperature range (about 15 K), arises from structurally features of the anionic sublattice with arsenic.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:25288 |
Date | 15 April 2010 |
Creators | Czulucki, Andreas |
Contributors | Kniep, Rüdiger, Ruck, Michael, Technische Universität Dresden |
Publisher | Max-Planck-Institut für Chemische Physik fester Stoffe |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | German |
Detected Language | German |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0029 seconds