Return to search

Ηλεκτροχημική ενίσχυση και συμπαραγωγή ηλεκτρικής ενέργειας και χρησίμων χημικών προϊόντων σε κυψελίδες στερεού ηλεκτρολύτη

Οι στερεοί ηλεκτρολύτες μπορούν να χρησιμοποιηθούν ως ενεργοί καταλυτικοί
φορείς για την αντιστρεπτή μεταβολή της ενεργότητας καταλυτικών στρωμάτων (films) μετάλλων και μεταλλικών οξειδίων, κατόπιν πόλωσης του ηλεκτροδίου-καταλύτη και συνακόλουθης άντλησης ειδών-ενισχυτών από ή προς την καταλυτική επιφάνεια. Το φαινόμενο αυτό, το οποίο επιτρέπει τη ρύθμιση της καταλυτικής ενεργότητας in situ, είναι γνωστό στην βιβλιογραφία ως Ηλεκτροχημική Ενίσχυση (Electrochemical Promotion) ή Μη-Φαρανταϊκή Ηλεκτροχημική Τροποποίηση της Καταλυτικής Ενεργότητας (NEMCA effect), καθώς οι επαγόμενες μεταβολές στον καταλυτικό ρυθμό είναι δυνατό να υπερβαίνουν τον αντίστοιχο ρυθμό μεταφοράς ιόντων μέσα από τον στερεό ηλεκτρολύτη κατά αρκετές τάξεις μεγέθους.
Στα πλαίσια του πρώτου μέρους της διατριβής αυτής παρουσιάζονται αποτελέσματα που αφορούν στη μελέτη της επίδρασης του φαινομένου της Ηλεκτροχημικής Ενίσχυσης στην αντίδραση οξείδωσης του προπανίου πάνω σε πορώδη καταλυτικά στρώματα Pt και Rh εναποτεθειμένα σε στερεό ηλεκτρολύτη YSZ, αγωγό ιόντων οξυγόνου, καθώς και πάνω σε πορώδες καταλυτικό στρώμα Pt, εναποτεθειμένο σε στερεό ηλεκτρολύτη β²-Al2O3, έναν αγωγό ιόντων Na+. Στην περίπτωση της οξείδωσης του προπανίου πάνω σε καταλυτικά στρώματα Rh/YSZ και Pt/YSZ, πραγματοποιήθηκαν πειράματα στη θερμοκρασιακή περιοχή 425 - 520οC, για υποστοιχειομετρικό λόγο οξυγόνου προς προπάνιο. Επιβολή είτε θετικών είτε αρνητικών ρευμάτων οδήγησε σε μη-φαρανταϊκή αύξηση του καταλυτικού ρυθμού, έως 6 φορές στην περίπτωση του Rh και έως 1350 φορές στην περίπτωση της Pt. Η επαγόμενη μεταβολή του καταλυτικού ρυθμού Δr βρέθηκε μεγαλύτερη από τον αντίστοιχο ηλεκτροχημικό ρυθμό μεταφοράς I/2F ιόντων οξυγόνου κατά 2330 φορές στην περίπτωση του καταλύτη Pt και κατά 830 φορές στην περίπτωση του καταλύτη Rh. Η αύξηση του ρυθμού που παρατηρήθηκε στην περίπτωση καταλύτη Pt είναι από τις υψηλότερες που έχουν αναφερθεί σε μελέτες Ηλεκτροχημικής Ενίσχυσης με χρήση στερεών ηλεκτρολυτών αγωγών ιόντων οξυγόνου.
Στην περίπτωση της οξείδωσης του προπανίου πάνω σε καταλυτικό στρώμα Pt/ β²-Al2O3, έγιναν πειράματα στην θερμοκρασιακή περιοχή 320-440 οC και για στοιχειομετρικό λόγο οξυγόνου προς προπάνιο. Το σύστημα παρουσίασε ηλεκτρόφοβη συμπεριφορά, δηλαδή επιβολή αρνητικού δυναμικού και συνακόλουθη προσθήκη νατρίου στην καταλυτική επιφάνεια οδήγησε σε μείωση του ρυθμού παραγωγής CO2.
Παρατηρήθηκαν σχετικές μεταβολές του καταλυτικό ρυθμού έως και 60 φορές μεγαλύτερες από την αντίστοιχη μεταβολή της κάλυψης του νατρίου. Επιπλέον, πραγματοποιήθηκαν πειράματα γραμμικής σάρωσης δυναμικών και
κυκλικής βολταμμετρίας στη θερμοκρασιακή περιοχή 320 – 480 οC, κάτω από συνθήκες ηλεκτροχημικής ενίσχυσης οξείδωσης του προπανίου, αλλά και κάτω από ατμόσφαιρες Ο2, CO2 και προπανίου σε Ηe όπου και παρατηρήθηκαν περισσότερες της μιας κορυφές.
Ο αριθμός, η θέση και το ύψος των κορυφών αυτών, βρέθηκε ότι εξαρτώνται από τη σύσταση της αέριας φάσης, τη θερμοκρασία, το δυναμικό εκκίνησης και την κατάσταση του καταλύτη πριν από τη σάρωση. Τα αποτελέσματα δείχνουν ότι σχηματίζονται περισσότερες της μιας φάσεις νατρίου πάνω στην καταλυτική επιφάνεια Pt κατά την ηλεκτροχημική μεταφορά ιόντων νατρίου προς αυτή. Στο κεφάλαιο αυτό συζητούνται οι πιθανές ηλεκτροχημικές αντιδράσεις που περιλαμβάνουν είδη νατρίου και η ταυτότητα των σχηματιζόμενων ειδών νατρίου.
Τα αποτελέσματα του πρώτου μέρους της διατριβής εξηγήθηκαν με βάση τις γενικές αρχές του φαινομένου της Ηλεκτροχημικής Ενίσχυσης, λαμβανομένου υπόψη του μηχανισμού της αντίδρασης και της επίδρασης της μεταβολής του δυναμικού και του έργου εξόδου της καταλυτικής επιφάνειας πάνω στην ισχύ των δεσμών χημορόφησης και στην οξειδωτική κατάσταση του καταλύτη.
Στο δεύτερο τμήμα της διατριβής εξετάζονται μια σειρά από καθοδικά περοβσκιτικά ηλεκτρόδια με άμεσο στόχο την διερεύνηση της ηλεκτροκαταλυτικής τους ενεργότητας για την αναγωγή του οξυγόνου στο θερμοκρασιακό εύρος 600-850 οC.
Δοκιμάστηκαν συνολικά τέσσερα περοβσκιτικά καθοδικά ηλεκτρόδια από τα οποία το ένα ήταν σύνθετο ηλεκτρόδιο (LSM(La0.65Sr0.3MnO3)-ZrO2(Y2O3)) και τα υπόλοιπα τρία L58SCF (La0.58Sr0.4Co0.2Fe0.8O3-δ), LS2F (La0.9Sr1.1FeO4-δ) και L78SCF (La0.78Sr0.2Co0.2Fe0.8O3-δ) μικτής ηλεκτρονιακής-ιοντικής αγωγιμότητας. Προκειμένου να γίνει η σύγκριση της ηλεκτροκαταλυτικής ενεργότητας των καθόδων σε συνθήκες που να προσομοιώνουν τη λειτουργία τους σε κελιά καυσίμου, έγινε σύγκριση σε διαφορετικές θερμοκρασίες των πυκνοτήτων ρεύματος i που αντιστοιχούν στην ίδια υπέρταση, σε ένα εκτεταμένο εύρος καθοδικών υπερτάσεων. Η σειρά ηλεκτροκαταλυτικής ενεργότητας βρέθηκε ότι αυξάνει σύμφωνα με τη σειρά: LS2F/CGO/YSZ£ LSM/LSMSZ/CGO/YSZ<L58SCF/CGO/YSZ<L78SCF/CGO<YSZ. Η σειρά αυτή επιβεβαιώθηκε και από φάσματα σύνθετης αντίστασης σε συνθήκες ανοιχτού κυκλώματος.
Στη συνέχεια της διατριβής, έγινε μελέτη της λειτουργίας κυψελίδος καυσίμου L58SCF-CGO (κάθοδος)/CGO/YSZ/Ni (1% at Au)-YSZ (άνοδος) με καύσιμο προπάνιο υπό συνθήκες εσωτερικής αναμόρφωσης του καυσίμου (συντροφοδοσία προπανίου με υδρατμό). Σαν κάθοδος χρησιμοποιήθηκε το σύνθετης αγωγιμότητας ηλεκτρόδιο L58SCF-CGO το οποίο στην παρούσα διατριβή βρέθηκε ότι έχει πολύ καλή ηλεκτροκαταλυτική ενεργότητα για την αναγωγή του οξυγόνου. Ως άνοδος χρησιμοποιήθηκε το state of the art ηλεκτρόδιο Ni-YSZ με προσθήκη μιας μικρής ποσότητας Au (1% at Au), με σκοπό την μείωση της ποσότητας του άνθρακα στην καταλυτική επιφάνεια. Τα πειράματα πραγματοποιήθηκαν στο θερμοκρασιακό εύρος 600-750 οC, στην περιοχή δηλαδή ενδιάμεσων θερμοκρασιών στην οποία εστιάζεται σήμερα το μεγαλύτερο ερευνητικό ενδιαφέρον και σε στοιχειομετρικό λόγο υδρατμού προς προπάνιο, βασισμένο στη συνολική αντίδραση αναμόρφωσης του προπανίου από υδρατμό. Τα κύρια προϊόντα της αντίδρασης αναμόρφωσης ήταν τα H2, CO, CO2 και CH4 με το Η2 και το CO να ευνοούνται ισχυρά με την αύξηση της θερμοκρασίας. Η μέγιστη ισχύς στους 750 οC βρέθηκε ίση με 34.3 mW/cm2 με αντίστοιχη πυκνότητα ρεύματος ίση με i = 100 mA cm-2. Η ισχύς αυτή είναι αρκετά ικανοποιητική δεδομένου του μεγάλου πάχους του στερεού ηλεκτρολύτη (0.5 mm). Το σύστημα επέδειξε εξαιρετική σταθερότητα κατά τη διάρκεια των μετρήσεων κάτι που επιβεβαιώθηκε και μέσα από ένα πείραμα σταθερότητας στους 800 oC διάρκειας 100 ωρών. / The current study consists of two parts. In the first part, the effect of electrochemical promotion (EP) or non-faradaic electrochemical modification of catalytic activity (NEMCA) was studied, in the catalytic reaction of the total oxidation of propane on Pt and Rh films deposited on Y2O3-stabilized-ZrO2 (or YSZ), an O2- conductor, in the temperature range 420–520 oC. In the case of Pt/YSZ and for oxygen to propane ratios lower than the stoichiometric ratio it was found that the rate of propane oxidation could be reversibly enhanced by application of both positive and negative overpotentials (‘‘inverted volcano’’ behavior), by up to a factor of 1350 and 1130, respectively. The induced rate increase Δr exceeded the corresponding electrochemically controlled rate I/2F of O2- transfer through the solid electrolyte, resulting in absolute values of the apparent faradaic efficiency Λ=Δ r/(I/2F) up to 2330. The Rh/YSZ system exhibited similar EP behavior. Abrupt changes in the oxidation state of the rhodium catalyst, accompanied by changes in the catalytic rate, were observed by changing the O2 to propane ratio and catalyst potential. The highest rate increases, by up to a factor of 6, were observed for positive overpotentials with corresponding absolute values of faradaic efficiency K up to 830. Rate increases by up to a factor of 1.7 were observed for negative overpotentials. The observed EP behavior is explained by taking into account the mechanism of the reaction and the effect of catalyst potential on the binding strength of chemisorbed reactants and intermediates and on the oxidative state of the catalyst surface.
The effect of electrochemical promotion (EP) of propane combustion was also studied over a platinum film catalyst deposited on sodium β"-Al2O3, a Na+ conductor, in the temperature range 320–440oC. It was found that electrochemical pumping of sodium to the platinum surface markedly modifies its catalytic properties. For stoichiometric oxygen to propane ratio the system exhibited electrophobic behavior, i.e. addition of sodium resulted in decrease of the CO2 production rate. Relative changes in the catalytic rate by up to 60 times larger than the corresponding change in sodium coverage were measured. The observed behavior is explained by taking into account the reaction mechanism and the effect of the electrochemically controlled sodium coverage on the bonding of coadsorbed reactant species.
Linear sweep and cyclic voltammetry were used to investigate the electrochemical processes taking place at the Pt/sodium β"-Al2O3 interface under conditions of electrochemical promotion of propane combustion and in mixtures of O2, CO2 or propane with helium, at temperatures between 320 and 480oC. The number, position and magnitude of the peaks in the obtained voltammograms were found to depend on gas phase composition, temperature, starting potential and pre-scan conditions. The results showed that under conditions of electrochemical promotion of propane combustion more than one sodium phases can be formed on the Pt catalyst surface as a result of electrochemical pumping of sodium ions to it. The possible electrochemical reactions involving sodium species and the identity of the formed sodium phases during electrochemical pumping are discussed on the basis of the results obtained and those of former studies.
In the second part of the study, the electrochemical performance of L58SCF (La0.58Sr0.4Co0.2Fe0.8O3-δ), LS2F (La0.9Sr1.1FeO4-δ), L78SCF (La0.78Sr0.2Co0.2Fe0.8O3-δ) and composite LSM (La0.65Sr0.3MnO3)/LSM-YSZ (50%wt-50%wt) cathode electrodes interfaced to a double layer CGO (Ce0.8Gd0.2O2)/YSZ electrolyte was studied using impedance spectroscopy and current-overpotential measurements. The experiments were carried out in the temperature range 600-850oC and, mainly, under flow of 21% O2/He mixture over the perovskite electrodes. The highest electrocatalytic activity for oxygen reduction was observed for the L78SCF cathode, according to the order: LS2F/CGO/YSZ £LSM/LSMSZ/CGO/YSZ<L58SCF/CGO/YSZ<L78SCF/CGO<YSZ. The composite electrode L58SCF-CGO was used in the last part of this study, combined with a carbon tolerant Au-modified (1% atomic ratio with respect to Ni) Ni-YSZ anode, prepared by combustion synthesis, to study the steam reforming of propane under stoichiometric oxygen to steam ratio. The experiments were carried out in the temperature range 600-750 oC, which is the target range for the successful commercialization of the intermediate temperature fuel cells. The main products of the reforming reaction were H2, CO, CO2 and CH4 with H2, CO to be strongly favored by the temperature increase. The maximum power density was found to be 34.3 mW/cm2 at 750oC with corresponding current density equal to i = 100 mA cm-2. The relatively low values of the current and power densities were mainly due to the large thickness of the electrolyte (0.5 mm). Overall, the system exhibited excellent stability during the experiment, which was confirmed through a 100 h stability test.

Identiferoai:union.ndltd.org:upatras.gr/oai:nemertes:10889/709
Date14 February 2008
CreatorsΚωτσιονόπουλος, Νικόλαος
ContributorsΜπέμπελης, Συμεών, Kotsionopoulos, Nikolaos, Βαγενάς, Κωνσταντίνος, Βερύκιος, Ξενοφών, Νικολόπουλος, Παναγιώτης, Κορδούλης, Χρήστος, Μπογοσιάν, Σογομών, Κονταρίδης, Δημήτριος, Μπέμπελης, Συμεών
Source SetsUniversity of Patras
Languagegr
Detected LanguageGreek
TypeThesis
RelationΗ ΒΥΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της.

Page generated in 0.0034 seconds