Return to search

Στέρεες κινήσεις και ισομετρίες υπερεπιφανειών του Rn+1

Η εργασία την οποία διαπραγματεύομαι αποτελείται από δύο ενότητες :
Α. Τη στερεά κίνηση σωμάτων και Β. Την ισομετρία δύο n- επιφανειών.
Στην Α ενότητα δίνεται ο ορισμός της στερεάς κίνησης και τέσσερα γνωστά παραδείγματα αυτής. Ακολουθεί το θεώρημα που αποδεικνύει ότι η στερεά κίνηση είναι η σύνθεση ενός μοναδικού ορθογώνιου μετασχηματισμού με μια μοναδική μεταφορά και το πόρισμα αυτού, με σημαντικότερη την απόδειξη ότι το διαφορικό μιας στερεάς κίνησης διατηρεί το εσωτερικό γινόμενο. Δίνεται επίσης ο ορισμός των ισοδύναμων n- επιφανειών καθώς και η απόδειξη της σχέσης που συνδέει τις δεύτερες θεμελιώδεις μορφές αυτών των n- επιφανειών. Τέλος αποδεικνύονται 12 ιδιότητες που αφορούν δύο ισοδύναμες n- επιφάνειες.
Στην Β ενότητα γίνεται μελέτη εννοιών που αφορούν την εσωτερική γεωμετρία μιας n- επιφάνειας και δίνεται ο ορισμός της ισομετρίας δύο n-επιφανειών. Ακολουθούν τέσσερα ενδιαφέροντα παραδείγματα ισομετρικών επιφανειών. Στη συνέχεια δίνεται η έννοια της συναλλοίωτης διαφόρισης και οι ιδιότητές της. Τέλος, αποδεικνύεται ότι η συναλλοίωτη διαφόριση και η παράλληλη μεταφορά είναι εσωτερικές πράξεις της n- επιφάνειας και η Gauss-Kronecker καμπυλότητα αποτελεί εσωτερική ποσότητα μιας n- επιφάνειας για n- άρτιο. / -

Identiferoai:union.ndltd.org:upatras.gr/oai:nemertes:10889/887
Date28 August 2008
CreatorsΠαναγοπούλου, Αικατερίνη
ContributorsΚοτσιώλης, Αθανάσιος, Κοτσιώλης, Αθανάσιος
Source SetsUniversity of Patras
Languagegr
Detected LanguageGreek
TypeThesis
Rights0
RelationΗ ΒΥΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της.

Page generated in 0.0023 seconds