Return to search

Interconversion of the Specificities of Human Lysosomal Enzymes

Fabry disease (FD) is an X-linked recessive lysosomal storage disorder (LSD) known to affect approximately 1 in every 40,000 males, and a smaller number of females. FD results from a deficiency of functional α-galactosidase (α-GAL), which leads to the accumulation of terminally α-galactosylated substrates in the lysosome. The predominant treatment is Enzyme Replacement Therapy (ERT), requiring the regular infusion of recombinant human α-GAL. More than half of individuals receiving ERT experience a range of adverse infusion reactions, and it has been reported that as many as 88% of patients receiving ERT develop neutralizing IgG antibodies against the drug.
In aim of designing a non-immunogenic treatment candidate for Fabry disease ERT, we have engineered the active sites of α-GAL and another homologous family 27 exoglycosylase named α-N-acetylgalactosaminidase (α-NAGAL) to have interconverted substrate specificities. 11 of 13 active site residues are conserved between these two enzymes, and we have shown that their substrate specificities can be interconverted by mutating the two non-conserved active-site residues. We report the kinetic properties of these two mutants along with wild type controls, and use western blotting to show that both mutant enzymes retain their respective wild type enzyme antigenicity. Structural data obtained by X-ray crystallography on the α-GAL mutant (called α-GALSA ) reveals the mechanism by which substrate specificity is dictated between these two proteins, and provides explanations for the mutant’s reduced catalytic efficiency.

Identiferoai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:theses-1568
Date01 January 2010
CreatorsTomasic, Ivan B
PublisherScholarWorks@UMass Amherst
Source SetsUniversity of Massachusetts, Amherst
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses 1911 - February 2014

Page generated in 0.0027 seconds