Return to search

Ανάπτυξη αποδοτικών παραμετρικών τεχνικών αντιστοίχισης εικόνων με εφαρμογή στην υπολογιστική όραση

Μια από τις συνεχώς εξελισσόμενες περιοχές της επιστήμης των υπολογιστών είναι η Υπολογιστική Όραση, σκοπός της οποίας είναι η δημιουργία έξυπνων συστημάτων για την ανάκτηση πληροφοριών από πραγματικές εικόνες. Πολλές σύγχρονες εφαρμογές της υπολογιστικής όρασης βασίζονται στην αντιστοίχιση εικόνων. Την πλειοψηφία των αλγορίθμων αντιστοίχισης συνθέτουν παραμετρικές τεχνικές, σύμφωνα με τις οποίες υιοθετείται ένα παραμετρικό μοντέλο, το οποίο εφαρμοζόμενο στη μια εικόνα δύναται να παρέχει μια προσέγγιση της άλλης. Στο πλαίσιο της διατριβής μελετάται εκτενώς το πρόβλημα της Στερεοσκοπικής Αντιστοίχισης και το γενικό πρόβλημα της Ευθυγράμμισης Εικόνων. Για την αντιμετώπιση του πρώτου προβλήματος προτείνεται ένας τοπικός αλγόριθμος διαφορικής αντιστοίχισης που κάνει χρήση μιας νέας συνάρτησης κόστους, του Τροποποιημένου Συντελεστή Συσχέτισης (ECC), η οποία ενσωματώνει το παραμετρικό μοντέλο μετατόπισης στον κλασικό συντελεστή συσχέτισης. Η ενσωμάτωση αυτή καθιστά τη νέα συνάρτηση κατάλληλη για εκτιμήσεις ανομοιότητας με ακρίβεια μικρότερη από αυτήν του εικονοστοιχείου. Αν και η συνάρτηση αυτή είναι μη γραμμική ως προς την παράμετρο μετατόπισης, το πρόβλημα μεγιστοποίησης έχει κλειστού τύπου λύση με αποτέλεσμα τη μειωμένη πολυπλοκότητα της διαδικασίας της αντιστοίχισης με ακρίβεια υπο-εικονοστοιχείου. Ο προτεινόμενος αλγόριθμος παρέχει ακριβή αποτελέσματα ακόμα και κάτω από μη γραμμικές φωτομετρικές παραμορφώσεις, ενώ η απόδοσή του υπερτερεί έναντι γνωστών στη διεθνή βιβλιογραφία τεχνικών αντιστοίχισης ενώ φαίνεται να είναι απαλλαγμένος από το φαινόμενο pixel locking. Στην περίπτωση του προβλήματος της ευθυγράμμισης εικόνων, η προτεινόμενη συνάρτηση γενικεύεται με αποτέλεσμα τη δυνατότητα χρήσης οποιουδήποτε δισδιάστατου μετασχηματισμού. Η μεγιστοποίησή της, η οποία αποτελεί ένα μη γραμμικό πρόβλημα, επιτυγχάνεται μέσω της επίλυσης μιας ακολουθίας υπο-προβλημάτων βελτιστοποίησης. Σε κάθε επανάληψη επιβάλλεται η μεγιστοποίηση μιας μη γραμμικής συνάρτησης του διανύσματος διορθώσεων των παραμέτρων, η οποία αποδεικνύεται ότι καταλήγει στη λύση ενός γραμμικού συστήματος. Δύο εκδόσεις του σχήματος αυτού προτείνονται: ο αλγόριθμος Forwards Additive ECC (FA-ECC) και o αποδοτικός υπολογιστικά αλγόριθμος Inverse Compositional ECC (IC-ECC). Τα προτεινόμενα σχήματα συγκρίνονται με τα αντίστοιχα (FA-LK και SIC) του αλγόριθμου Lucas-Kanade, ο οποίος αποτελεί σημείο αναφοράς στη σχετική βιβλιογραφία, μέσα από μια σειρά πειραμάτων. Ο αλγόριθμος FA-ECC παρουσιάζει όμοια πολυπλοκότητα με τον ευρέως χρησιμοποιούμενο αλγόριθμο FA-LΚ και παρέχει πιο ακριβή αποτελέσματα ενώ συγκλίνει με αισθητά μεγαλύτερη πιθανότητα και ταχύτητα. Παράλληλα, παρουσιάζεται πιο εύρωστος σε περιπτώσεις παρουσίας προσθετικού θορύβου, φωτομετρικών παραμορφώσεων και υπερ-μοντελοποίησης της γεωμετρικής παραμόρφωσης των εικόνων. Ο αλγόριθμος IC-ECC κάνει χρήση της αντίστροφης λογικής, η οποία στηρίζεται στην αλλαγή των ρόλων των εικόνων αντιστοίχισης και συνδυάζει τον κανόνα ενημέρωσης των παραμέτρων μέσω της σύνθεσης των μετασχηματισμών. Τα δύο αυτά χαρακτηριστικά έχουν ως αποτέλεσμα τη δραστική μείωση του υπολογιστικού κόστους, ακόμα και σε σχέση με τον SIC αλγόριθμο, με τον οποίο βέβαια παρουσιάζει παρόμοια συμπεριφορά. Αν και ο αλγόριθμος FA-ECC γενικά υπερτερεί έναντι των τριών άλλων αλγορίθμων, η επιλογή μεταξύ των δύο προτεινόμενων σχημάτων εξαρτάται από το λόγο μεταξύ ακρίβειας αντιστοίχισης και υπολογιστικού κόστους. / Computer Vision has been recently one of the most active research areas in computer society. Many modern computer vision applications require the solution of the well known image registration problem which consist in finding correspondences between projections of the same scene. The majority of registration algorithms adopt a specific parametric transformation model, which is applied to one image, thus providing an approach of the other one. Towards the solution of the Stereo Correspondence problem, where the goal is the construction of the disparity map, a local differential algorithm is proposed which involves a new similarity criterion, the Enhanced Correlation Coefficient (ECC). This criterion is invariant to linear photometric distortions and results from the incorporation of a single parameter model into the classical correlation coefficient, defining thus a continuous objective function. Although the objective function is non-linear in translation parameter, its maximization results in a closed form solution, saving thus much computational burden. The proposed algorithm provides accurate results even under non-linear photometric distortions and its performance is superior to well known conventional stereo correspondence techniques. In addition, the proposed technique seems not to suffer from pixel locking effect and outperforms even stereo techniques, dedicated to the cancellation of this effect. For the image alignment problem, the maximization of a generalized version of ECC function that incorporates any 2D warp transformation is proposed. Although this function is a highly non-linear function of the warp parameters, an efficient iterative scheme for its maximization is developed. In each iteration of the new scheme, an efficient approximation of the nonlinear objective function is used leading to a closed form solution of low computational complexity. Two different iterative schemes are proposed; the Forwards Additive ECC (FA-ECC) and the Inverse Compositional ECC (IC-ECC) algorithm. Τhe proposed iterative schemes are compared with the corresponding schemes (FA-LK and SIC) of the leading Lucas-Kanade algorithm, through a series of experiments. FA-ECC algorithm makes use of the known additive parameter update rule and its computational cost is similar to the one required by the most widely used FA-LK algorithm. The proposed iterative scheme exhibits increased learning ability, since it converges faster with higher probability. This superiority is retained even in presence of additive noise and photometric distortion, as well as in cases of over-modelling the geometric distortion of the images. On the other hand, IC-ECC algorithm makes use of inverse logic by swapping the role of images and adopts the transformation composition update rule. As a consequence of these two options, the complexity per iteration is drastically reduced and the resulting algorithm constitutes the most computationally efficient scheme than three other above mentioned algorithms. However, empirical learning curves and probability of convergence scores indicate that the proposed algorithm has a similar performance to the one exhibited by SIC. Though FA-ECC seems to be clearly more robust in real situation conditions among all the above mentioned alignment algorithms, the choice between two proposed schemes necessitates a trade-off between accuracy and speed.

Identiferoai:union.ndltd.org:upatras.gr/oai:nemertes:10889/1229
Date12 January 2009
CreatorsΕυαγγελίδης, Γεώργιος
ContributorsΨαράκης, Εμμανουήλ, Γαλατσάνος, Νικόλαος, Μουστακίδης, Γεώργιος, Μπερμπερίδης, Κωνσταντίνος, Φωτόπουλος, Σπυρίδων, Οικονόμου, Γεώργιος, Δερματάς, Ευάγγελος, Ψαράκης, Εμμανουήλ
Source SetsUniversity of Patras
Languagegr
Detected LanguageGreek
TypeThesis
Rights0
RelationΗ ΒΥΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της.

Page generated in 0.0028 seconds