Το οξείδιο του ψευδαργύρου (ZnO) ανήκει στην κατηγορία των διάφανων αγώγιμων οξειδίων και θεωρείται ως το ανόργανο υλικό που επιδεικνύει τη μεγαλύτερη ποικιλία χαμηλοδιάστατων νανοδομών. Νανοδομές διαφόρων μορφολογιών του ZnO αναπτύσσονται με πλήθος μεθόδων – με κυριότερες την αέρια μεταφορά σε υψηλή θερμοκρασία (VLS) και τη χημεία διαλυμάτων – και παρουσιάζουν μεγάλο εύρος πιθανών εφαρμογών σε τομείς όπως η οπτική, η οπτικοηλεκτρονική, οι αισθητήρες, η παραγωγή ενέργειας, οι βιοϊατρικές επιστήμες, κ.α.
Παρά τη συστηματική έρευνα σχετικά με την ανάπτυξη των νανοδομών αυτών για πάνω από μια δεκαετία, η καθιέρωση μιας πειραματικής μεθοδολογίας ικανής να παρέχει με επαναλήψιμο τρόπο συγκεκριμένες μορφολογίες νανοδομών του ZnO είναι ακόμα ένα ανοικτό ερώτημα. Αυτό αποτελεί και μια από τις τρέχουσες ερευνητικές προκλήσεις αφού οι παραγόμενες μορφολογίες χαρακτηρίζονται από διαφορετικές φυσικές ιδιότητες ενώ είναι αρκετά ευαίσθητες σε μικρές μεταβολές των πειραματικών συνθηκών.
Στόχος της παρούσας εργασίας είναι η συστηματική μελέτη του ρόλου διαφόρων παραμέτρων της σύνθεσης στα μορφολογικά χαρακτηριστικά και τις οπτικές ιδιότητες των νανοδομών του ZnO. Η ανάπτυξη των νανοδομών πραγματοποιήθηκε τόσο με αέρια μεταφορά σε υψηλή θερμοκρασία (VLS) όσο και με τη μέθοδο της κρυστάλλωσης σε υδατικά διαλύματα (CBD). Σκοπός είναι να κατανοηθεί πως συγκεκριμένες παράμετροι επηρεάζουν τη μορφολογία των νανοδομών, το μέγεθος, τις κατανομές των διαμέτρων των μονοδιάστατων νανονημάτων και τον προσανατολισμό αυτών στο υπόστρωμα.
Στην πρώτη περίπτωση δόθηκε έμφαση στο ρόλο του πάχους του υμενίου του καταλύτη (Au), αλλά και στον τρόπο ανόπτησης αυτού ώστε να δημιουργηθεί η κατάλληλη μορφολογία του καταλύτη η οποία μέσω της ανάπτυξης με τη μέθοδο VLS επηρεάζει κατ’ επέκταση και τη μορφολογία των νανοδομών του ZnO. Έτσι, επιχρυσωμένα υποστρώματα πυριτίου (Si) με πάχος καταλύτη (h) από 2 nm έως 15 nm χρησιμοποιήθηκαν μετά από ανόπτησή τους σε διάφορες θερμοκρασίες και για διαφορετικούς χρόνους για την ανάπτυξη νανονημάτων ZnO. Διαπιστώθηκε ότι για πολύ λεπτά υμένια Au (h ≤ 3 nm) δημιουργούνται σφαιρικά νανοσωματίδια χρυσού και ο χρόνος ανόπτησης δεν επηρεάζει τη μορφολογία και την κατανομή μεγεθών. Για παχύτερα υμένια (h ≥ 5 nm), ανόπτηση για σύντομο χρόνο δεν επαρκεί για την ανάπτυξη νανοσωματιδίων αντίστοιχα με αυτά των λεπτών υμενίων. Στην περίπτωση αυτή, η αύξηση του χρόνου ανόπτησης ή/και αύξηση της θερμοκρασίας ανόπτησης είναι επιβεβλημένη για την ελάττωση του μέσου μεγέθους. Εν γένει, ανόπτηση σε χαμηλότερη θερμοκρασία (400 °C) για μεγάλο χρονικό διάστημα (30 λεπτά) μετατρέπει τα υμένια του Au σε νανοσωματίδια με ευρείες κατανομές μεγεθών και υψηλές μέσες τιμές. Η ανάπτυξη νανονημάτων ZnO εξαρτάται από το μέσο μέγεθος των νανοσωματιδίων του Au. Η ανάπτυξη παρεμποδίζεται στα μεγάλα μεγέθη νανοσωματιδίων Au αφού ο υπερκορεσμός τους με Zn και O είναι αργός. Ως εκ τούτου, για τα υμένια Au με πάχος μεγαλύτερο από ~10 nm η ανάπτυξη νανονημάτων του ZnO είναι εξαιρετικά περιορισμένη.
Στη δεύτερη περίπτωση, εξετάστηκε διεξοδικά ένα πλήθος παραμέτρων όπως η συγκέντρωση των αντιδρώντων στο διάλυμα, η παρουσία οργανικών ενώσεων για τον έλεγχο της διαμέτρου, οι ιδιότητες του πρόδρομου υμενίου κρυστάλλωσης στο υπόστρωμα, ο χρόνος κρυστάλλωσης, κ.α. Γυάλινα αγώγιμα υποστρώματα (FTO) στα οποία είχε εναποτεθεί πρόδρομο υμένιο πυρηνοποίησης, χρησιμοποιήθηκαν σε αυτή την περίπτωση για την ανάπτυξη νανονημάτων. Καλά προσανατολισμένες δομές κάθετες στο υπόστρωμα με διάμετρο ~30 nm και μήκος μέχρι ~7 μm δημιουργήθηκαν με χρήση 0.04 Μ ZnAc, 0.02 M HMTA, 0.16 M PEI και 0.04 M NH4OH σε υδατικό διάλυμα στους 95 οC. H χρονική διάρκεια των πειραμάτων κυμάνθηκε στο διάστημα 1 – 24 h. Η τιμή του pH του διαλύματος ήταν περίπου 7. Ο προσανατολισμός των νανοδομών χειροτέρευε με αύξηση του μήκους τους καθώς κάμπτονταν και ενώνονταν με τα γειτονικά τους. Επομένως, για την βελτίωση της δομής τους βρέθηκε ότι είναι απαραίτητη η ανανέωση του διαλύματος κάθε ~2.30 h.
Οι παραχθείσες νανοδομές εξετάστηκαν με ηλεκτρονική μικροσκοπία σάρωσης (SEM) και περίθλαση ακτίνων – Χ (XRD). Για την μελέτη των ατελειών στους κρυστάλλους του ZnO χρησιμοποιήθηκε η φασματοσκοπία Raman και η φασματοσκοπία φωτοφωταύγειας (Photoluminescence). Με την φασματοσκοπία Raman μελετήθηκαν οι τρόποι δόνησης των μορίων του υλικού, ενώ με τη φασματοσκοπία φωτοφωταύγειας η ύπαρξη ατελειών στον κρύσταλλο, όπως έλλειψη οξυγόνου, αντικατάσταση ψευδαργύρου με οξυγόνο, κλπ. / Zinc oxide (ZnO) is one of the most important low dimensional semiconducting oxides owing to the amazing variety of the nanostructures it can form by means of various synthesis routes. The most important methods are the vapor deposition and the chemical bath deposition. ZnO nanostructures have attracted considerable attention in view of several applications they encounter such as optics – optoelectronics, sensors, energy production, biomedical sciences, etc.
Despite systematic research concerning the rational growth of ZnO nanostructures for over a decade, the establishment of an experimental methodology capable of providing specific morphologies of ZnO nanostructures in a reproducible way is still an open question. This is also one of the current research challenges because the resulting morphologies are characterized by different physical properties and are quite sensitive to small changes in experimental conditions.
The current work is aimed at providing a systematic study of the role of various growth parameters on the morphological features and the optical properties of ZnO nanostructures. Growth was achieved by catalyst-assisted (Au) vapor transport at high temperature (VLS) and by solution chemistry (CBD). It is important to gain understanding about how certain parameters affect the morphology of the nanostructures, the size distributions of the diameters and their orientation relative to the substrate.
High temperature evaporation methods, such as the vapor-liquid-solid mechanism, have been exploited for the controlled growth of ZnO nanostructures on various substrates. While Au is the most frequently used catalyst for growing ZnO nanowires, its morphological features on the substrate, which determine the size and shape of the nanostructures grown, are not yet methodically explored. In the current work, we investigated the details of thermal dewetting of Au films into nanoparticles on Si substrates. Au films of various thicknesses, h, ranging from 2 to 15 nm, were annealed under slow and fast rates at various temperatures and the morphological details of the nanoparticles formed were investigated. The vapor-liquid-solid method was employed to investigate the role of the Au nanoparticles on the growth details of ZnO nanowires. Efficient and high throughput growth of ZnO nanowires, for a given growth time, is realized in cases of thin Au films, i.e. when the thickness is lower than 10 nm.
In the second case, the influence of a number of parameters such as the thickness of the seed layer, the reactants concentration, the existence of organic compounds, the growth time, etc. on the growth of ZnO nanowires on conducting glass substrates (FTO) was examined. After parameter optimization it was found that ZnO nanowires grown have excellent orientation, perpendicular to the substrate, while their diameter and length were found to be ~30 nm and ~7 μm, respectively. The best growth conditions were achieved using 0.04 Μ ZnAc, 0.02 M HMTA, 0.16 M PEI and 0.04 M NH4OH. The reaction temperature was kept at 95 οC for 1 h to 24 h. The pH value was ~ 7. The alignment of ZnO nanowires deteriorates when their length increases; therefore neighboring nanowires bend forming bundles. This shortcoming has been overcome by employing the renewal of the solution every 2.30 h.
The structure of ZnO nanowires was investigated by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Raman scattering was used to study defects of ZnO nanostructures. New Raman modes, in comparison to the bulk crystal, have been assigned to finite size effects and phonon confinement in the nanostructures. Photoluminescence spectroscopy provides evidence for the type of the defects such as oxygen vacancies, zinc interstitials etc.
Identifer | oai:union.ndltd.org:upatras.gr/oai:nemertes:10889/8379 |
Date | 02 March 2015 |
Creators | Γκοβάτση, Αικατερίνη |
Contributors | Κουρής, Στυλιανός, Govatsi, Ekaterini, Γιαννόπουλος, Σπύρος, Σκαρλάτος, Δημήτριος |
Source Sets | University of Patras |
Language | gr |
Detected Language | Greek |
Type | Thesis |
Rights | 12 |
Relation | Η ΒΚΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της. |
Page generated in 0.0036 seconds