Return to search

SAFE-NEXT : UNE APPROCHE SYSTEMIQUE POUR L'EXTRACTION DE CONNAISSANCES DE DONNEES.<br />Application A La Construction Et A L'interprétation De Scénarios D'accidents De La Route

Aujourd'hui, l'informatisation des saisies de données et la puissance des systèmes de collecte conduisent à la construction de grandes Bases de Données (BD). L'exploitation de ces millions de données en accidentologie et dans beaucoup d'autres domaines (e.g. management, marketing, etc.) fait appel à des techniques d'Extraction de Connaissances de Données (ECD). La complexité des données, du domaine d'application et des connaissances recherchées rendent fondamentale l'intégration des connaissances expertes dans le processus d'ECD. Cela nécessite la mise en place d'approches, méthodes et techniques d'identification, de représentation et d'opérationnalisation de ces connaissances.<br />Dans ce travail de thèse, nous proposons une nouvelle approche, appelée SAFE-Next (Systemic Approach For Enhanced kNowledge EXTraction, approche systémique pour l'extraction des connaissances) qui intègre les quatre approches suivantes : La première est appelée ASMEC (Approche Systémique de ModElisation des Connaissances). Elle consiste en une méthode de modélisation des connaissances multi-vues et selon une architecture à plusieurs niveaux d'abstraction. La deuxième approche, AICEF (Approche d'Incorporation des Connaissances Expertes dans la Fouille de données), propose l'élaboration et l'utilisation de méta-données multi-vues comme un moyen pour l'incorporation des connaissances formalisées par ASMEC dans le processus d'ECD. La troisième approche, ASAIC (Approche Systémique d'Analyse d'Impact de Changement), utilise le modèle de connaissances d'ASMEC pour une analyse interactive et multi-vues de l'impact d'un changement sur un système. La quatrième approche, ASEM (Approche Systémique d'Evaluation de Modèles), fournit un modèle général d'évaluation de modèles de connaissances. <br />Les fondements épistémologiques et méthodologiques de nos travaux sont respectivement le constructivisme et la systémique (ou cybernétique). En se basant sur ces fondements, nos travaux de recherche ont conduit à des contributions réparties en quatre domaines : En accidentologie, SAFE-Next fournit un outil efficace pour l'élaboration des STA permettant une meilleure analyse et compréhension de l'accident. Elle fournit aussi un moyen de capitalisation des connaissances offrant une vision synthétique des différents types de connaissances du domaine de l'accidentologie. En Ingénierie des Connaissances (IC), SAFE-Next propose un modèle général multi-vues et multi-niveaux d'abstraction de modélisation des connaissances pour le développement des Systèmes à Base de Connaissances (SBC). Elle permet aussi de guider l'élicitation des connaissances selon un modèle multi-vues. En ECD, SAFE-Next propose l'utilisation des métadonnées multi-vues pour l'incorporation des connaissances expertes du domaine dans la première et la dernière phase du processus d'ECD (i.e. préparation des données et interprétation des résultats). En conception de nouveaux systèmes, SAFE-Next fournit à travers les STA un moyen de communication entre les accidentologistes et les concepteurs des systèmes de sécurité embarqués dans les véhicules. Cette interface entre les deux métiers (i.e. conception et accidentologie) permet la construction de l'espace de conception pour développer et évaluer les systèmes de sécurité. Elle offre aussi un moyen d'analyse de l'impact d'un changement (e.g. introduction d'un nouveau système de sécurité) sur le comportement du système Conducteur-Véhicule-Environnement.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00011540
Date17 January 2005
CreatorsBen Ahmed, Walid
PublisherEcole Centrale Paris
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.002 seconds