Return to search

Towards adaptive learning and inference : applications to hyperparameter tuning and astroparticle physics / Contributions à l'apprentissage et l'inférence adaptatifs : applications à l'ajustement d'hyperparamètres et à la physique des astroparticules

Les algorithmes d'inférence ou d'optimisation possèdent généralement des hyperparamètres qu'il est nécessaire d'ajuster. Nous nous intéressons ici à l'automatisation de cette étape d'ajustement et considérons différentes méthodes qui y parviennent en apprenant en ligne la structure du problème considéré.La première moitié de cette thèse explore l'ajustement des hyperparamètres en apprentissage artificiel. Après avoir présenté et amélioré le cadre générique de l'optimisation séquentielle à base de modèles (SMBO), nous montrons que SMBO s'applique avec succès à l'ajustement des hyperparamètres de réseaux de neurones profonds. Nous proposons ensuite un algorithme collaboratif d'ajustement qui mime la mémoire qu'ont les humains d'expériences passées avec le même algorithme sur d'autres données.La seconde moitié de cette thèse porte sur les algorithmes MCMC adaptatifs, des algorithmes d'échantillonnage qui explorent des distributions de probabilité souvent complexes en ajustant leurs paramètres internes en ligne. Pour motiver leur étude, nous décrivons d'abord l'observatoire Pierre Auger, une expérience de physique des particules dédiée à l'étude des rayons cosmiques. Nous proposons une première partie du modèle génératif d'Auger et introduisons une procédure d'inférence des paramètres individuels de chaque événement d'Auger qui ne requiert que ce premier modèle. Ensuite, nous remarquons que ce modèle est sujet à un problème connu sous le nom de label switching. Après avoir présenté les solutions existantes, nous proposons AMOR, le premier algorithme MCMC adaptatif doté d'un réétiquetage en ligne qui résout le label switching. Nous présentons une étude empirique et des résultats théoriques de consistance d'AMOR, qui mettent en lumière des liens entre le réétiquetage et la quantification vectorielle / Inference and optimization algorithms usually have hyperparameters that require to be tuned in order to achieve efficiency. We consider here different approaches to efficiently automatize the hyperparameter tuning step by learning online the structure of the addressed problem. The first half of this thesis is devoted to hyperparameter tuning in machine learning. After presenting and improving the generic sequential model-based optimization (SMBO) framework, we show that SMBO successfully applies to the task of tuning the numerous hyperparameters of deep belief networks. We then propose an algorithm that performs tuning across datasets, mimicking the memory that humans have of past experiments with the same algorithm on different datasets. The second half of this thesis deals with adaptive Markov chain Monte Carlo (MCMC) algorithms, sampling-based algorithms that explore complex probability distributions while self-tuning their internal parameters on the fly. We start by describing the Pierre Auger observatory, a large-scale particle physics experiment dedicated to the observation of atmospheric showers triggered by cosmic rays. The models involved in the analysis of Auger data motivated our study of adaptive MCMC. We derive the first part of the Auger generative model and introduce a procedure to perform inference on shower parameters that requires only this bottom part. Our model inherently suffers from label switching, a common difficulty in MCMC inference, which makes marginal inference useless because of redundant modes of the target distribution. After reviewing existing solutions to label switching, we propose AMOR, the first adaptive MCMC algorithm with online relabeling. We give both an empirical and theoretical study of AMOR, unveiling interesting links between relabeling algorithms and vector quantization.

Identiferoai:union.ndltd.org:theses.fr/2012PA112307
Date19 November 2012
CreatorsBardenet, Rémi
ContributorsParis 11, Kégl, Balázs
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image, StillImage

Page generated in 0.0021 seconds