Avant-propos: Cet ouvrage se base en partie sur le travail réalisé en collaboration avec Alexia Jolicoeur-Martineau, Ioannis Mitliagkas et Rémi Tachet des Combes, réalisé en 2020 et publié à la conférence internationale d'apprentissage de représentations (ICLR 2021). Les analyses présentées dans les prochaines pages approfondissent, corrigent et ajoutent à cet ouvrage de manière substantive, sans toutefois reposer sur cet ouvrage ou quelconque connaissance couverte par ce texte. / Ce mémoire a pour but de présenter des analyses pertinentes au sujet des méthodes génératives dites Denoising Score Matching dans le but de mieux comprendre leur fonctionnement et d'améliorer les techniques existantes. Ces méthodes consistent à graduellement réduire le bruit dans une image en usant de réseaux neuraux profonds à des fins de synthèse. Tandis que les premiers chapitres contextualisent le problème du Denoising Score Matching, les chapitres suivants s’affairent à reformuler l’objectif d’entraînement du réseau neuronal, puis à analyser le processus itératif générateur. J’introduis par la suite les concepts fondateurs des méthodes de Monte Carlo par chaînes de Markov (MCMC) pour dynamiques Hamiltoniennes, que j’adapte ensuite à la synthèse d’image par réduction graduelle de bruit. Tandis que les dynamiques de Langevin ont jusqu’alors eut monopole des processus génératifs dans la littérature de synthèse par le score, les dynamiques Hamiltoniennes font l'objet d’un engouement quant à leur vitesse de convergence supérieure. Je démontre leur efficacité dans les sections suivantes et précise, dans le cas de la génération d'images complexes, les contextes dans lesquels leur usage est avantageux. Lors d’une étude d’ablation complète, je présente les gains indépendants et jumelés des améliorations proposées, et par le fait même, je contribue à notre compréhension des modèles basés sur le score. / This thesis presents pertinent analysis around generative modeling of the Denoising Score Matching family with the goals of better understanding how they work and improving existing methods. These methods work by gradually reducing noise in images using deep neural networks. While the first chapters contextualize the problem of Denoising Score Matching, the following chapters focus on reformulating the training objective of the neural network and analysing the iterative generative process. I introduce the founding concepts of Markov Chain Monte Carlo (MCMC) for Hamiltonian Dynamics and adapt them to our framework of image synthesis by annealing of Gaussian noise. While Langevin Dynamics have thus far dominated generative processes in the Denoising Score Matching literature, Hamiltonian Dynamics sustained interest from their superior convergence rate. I demonstrate their efficiency in the next chapters and elaborate on the contexts in which their use is advantageous to complex image generation. In a complete ablation study, I present the independent and coupled gains from every proposed improvements and thereby elevate our comprehension of Denoising Score Matching methods.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/26077 |
Date | 05 1900 |
Creators | Piché-Taillefer, Rémi |
Contributors | Mitliagkas, Ioannis, Thomaszewski, Bernhard |
Source Sets | Université de Montréal |
Language | English |
Detected Language | French |
Type | thesis, thèse |
Format | application/pdf |
Page generated in 0.0027 seconds