生活中在使用相機時,由於機器晃動或物體移動所造成的模糊影像時常可見。當影像模糊的成因是影像曝光時間內相機與拍攝物體相對線性移動時,則我們稱為線性動態模糊。理論上,模糊影像可以表示成原始影像與點擴散函數的旋積,本文的研究重點為點擴散函數中模糊參數的估計,雷登轉換將被運用在此問題上。我們首先介紹兩個現有方法,我們將探討這些方法中用來消除雜訊的步驟之適用性及必要性。另一方面,在模糊參數的估計過程中,我們在雷登轉換加入圓限制以及採用移動平均法。我們透過實驗證實,本篇提出的方法可以獲得更準確的估計結果以及更好的模糊影像還原效果。 / Nowadays, collecting a digital image becomes convenient and low-cost due to rapid progress in digital camera technology. Blurred images frequently appear because of camera shake or moving objects. There are several different types of blur. When the blur is caused by the linear motion between the object and the camera during the light exposure, it’s called a linear motion blur. Mathematically, a blurred image is expressed as a convolution of a point spread function and the original image. Our study considers Radon transform for the estimation of the point spread function. To improve the existing methods, a circle restriction and the moving average method are applied in the estimating procedure. Through intensive experiments, the proposed method is found enable to produce more accurate estimation and better performance in image restoration.
Identifer | oai:union.ndltd.org:CHENGCHI/G0103354026 |
Creators | 吳諭忠, Wu, Yu Chung |
Publisher | 國立政治大學 |
Source Sets | National Chengchi University Libraries |
Language | 中文 |
Detected Language | English |
Type | text |
Rights | Copyright © nccu library on behalf of the copyright holders |
Page generated in 0.0021 seconds