Return to search

Computing the Eigenproblem of a Real Orthogonal Matrix

設H是一個實數正交的矩陣,我們要求它的特徵值以及特徵向量。H可以表示成Schur參數的形式。根據Ammar,Gragg及Reichel的論文,我們把H的特徵問題轉換成兩個元素由Schur參數決定的二對角矩陣的奇異值(奇異向量)的問題。我們用這個方法寫成程式並且與CLAPACK的程式比較準確度及速度。最後列出一些數值的結果作為結論。 / Let H be an orthogonal Hessenberg matrix whose eigenvalues, and possibly eigenvectors, are to be determined. Then H can be represented in Schur parametric form [2]. Following Ammar, Gragg, and Reichel's paper [1], we compute the eigenproblem of H by finding the singular values (and vectors) of two bidiagonal matrices whose elements are explicitly known functions of the Schur parameters. We compare the accuracy and speed of our programs using the method described aboved with those in CLAPACK. Numerical results conclude this thesis.

Identiferoai:union.ndltd.org:CHENGCHI/A2002001743
Creators鄭月雯, Cheng, Yueh-Wen
Publisher國立政治大學
Source SetsNational Chengchi University Libraries
Language英文
Detected LanguageEnglish
Typetext
RightsCopyright © nccu library on behalf of the copyright holders

Page generated in 0.0019 seconds