癌症高居國人十大死因之首,由於癌症初期病患接受適時治療的存活率較高,因此若能「早期發現,早期診斷,早期治療」則可降低死亡率。本研究主要針對「表面強化雷射解析電離飛行質譜技術」(Surface-Enhanced Laser Desorption / Ionization Time-of-Flight Mass Spectrometry,SELDI-TOF-MS)所蒐集而來的攝護腺癌症蛋白質質譜之事前處理資料進行分析。目的是希望藉由Meta-Learning的方式結合分類器,並以逐步特徵選取之,期望以較少且具代表的特徵變數將資料分類,以達到較高的正確率。本文利用正確率決定逐步特徵選取時變數加入的順序,並進一步以Elastic Net與判定係數作為特徵變數排序依據,以改善變數間共線性高的問題。並且考慮投票法(多數表決法與權重投票法)以及串聯法(cascading):多個分類器串聯與單一分類器串聯。研究發現,以判定係數刪選特徵變數加入的先後順序並以支持向量機(Support Vector Machine,SVM)串聯的特徵選取結果在各分類下皆有良好表現,為較佳的特徵選取方式。
關鍵字:特徵選取、串聯法、蛋白質質譜、meta-learning、支持向量機
Identifer | oai:union.ndltd.org:CHENGCHI/G0094354014 |
Creators | 陳詩佳 |
Publisher | 國立政治大學 |
Source Sets | National Chengchi University Libraries |
Language | 中文 |
Detected Language | English |
Type | text |
Rights | Copyright © nccu library on behalf of the copyright holders |
Page generated in 0.0059 seconds