隨著社群媒體的普及,新聞媒體與意見領袖逐漸重視在社群媒體上以貼文方式發佈新聞資訊,社群媒體成為許多使用者會接收新聞與重大事件的主要管道且透過社群媒體的評論、分享與按讚等互動機制表達立場,這些即時互動行為是傳統媒體缺乏的機制,如何分析也是研究上的挑戰。本研究將針對Facebook上的貼文與互動行為進行分析,提供一款互動視覺化系統,找出貼文資料集中相似的貼文群集以及隨著時間推移下貼文屬性的變化,進一步瞭解Facebook上使用者、貼文與重大事件之間的相互影響。由於Facebook上的貼文與互動行為具多維度屬性,我們透過降維演算法將大量的貼文以二維散佈圖呈現,達到將相似貼文分群的效果。另外,我們設計了一種視覺化呈現方法,「Time Block」,突顯出時間的推移下貼文屬性的變化,藉此觀察出貼文資料集是否存在特定的模式。最後提供即時互動的操作介面,以及貼文屬性以及關鍵字兩者的統計,藉此連接到貼文集的屬性與時間的分佈關係,協助以視覺化方式進行探索與分析。最後,透過案例分析與使用者測試呈現此視覺化探索工具的優缺點。 / Social media becomes an essential medium for broadcast news. News media and option leader post information and people love to receive news and interactive using comment and likes to feedback. It is a research challenge to analysis this massive amount interactive behavior data in social media. In this paper, we propose an interactive visualization system to explore on the posts and interactions on Facebook. This system can help a user to find out the similar interactive behavior cluster and the trend of time-varying attributes to understand how the users, posts, and a big event to affect each other. Facebook Posts and interactive behavior contains multiple dimensional attributes; we adopt the dimensional reduce algorithm and 2D scatter plot to present the cluster in the spatial domain. Then, we design a time-varying visualization method, `Time Block,' can highlight the changing attributes and observe the unique pattern in the time domain. Also, we design a real-time interactive interface to connect the cluster and trend visualization with additional keyword distribution and attribute statistics. Finally, we use case study and user study to demonstrate the advantage of the proposed system.
Identifer | oai:union.ndltd.org:CHENGCHI/G0104753026 |
Creators | 郭建凱, Kuo, Jian-Kai |
Publisher | 國立政治大學 |
Source Sets | National Chengchi University Libraries |
Language | 中文 |
Detected Language | English |
Type | text |
Rights | Copyright © nccu library on behalf of the copyright holders |
Page generated in 0.0109 seconds