Return to search

Ultra narrow band based IoT networks / Réseaux IoT à bande ultra étroite

La compagnie Sigfox est reconnue comme un acteur prometteur pour des transmissions de longue-distance et faible consommation, dans le contexte de l'IoT. La modulation à bande ultra étroite (Ultra Narrow Band (UNB)), la technologie de communication choisie par Sigfox, permet de transmettre des informations dans des bandes de signal très étroites (typiquement 100 Hz). A cause de l'imprécision fréquentielle causée par les oscillateurs générateurs de fréquence, il n'est pas réaliste de transmettre des signaux UNB dans des canaux parfaitement orthogonaux. L'accès naturel au canal radio pour le système de UNB est de type ALOHA, avec un aspect aléatoire à la fois en en temps et en fréquence. Cet accès aléatoire peut introduire des collisions qui dégradent la performance du réseau. Le but de cette thèse est de caractériser la capacité des réseaux basés sur UNB, ainsi que d’améliorer la performance en considérant l'aspect aléatoire en temps et en fréquence. La première contribution de cette thèse, est une évaluation de la capacité en théorie et en simulation pour une seule station de base (BS), sous des conditions de canal idéaliste ou réaliste. En conditions idéalistes, nous avons exprimé la capacité pour le cas de l'ALOHA généralisé, et l'avons étendu aux cas de réplications. Pour les conditions réalistes, nous avons pris en compte l'interférence spectrale d'UNB et le path loss (sans et avec Rayleigh fading) afin de caractériser la performance des réseaux UNB, avec l'outil géométrie stochastique. La deuxième contribution est d'appliquer l’annulation successive d'interférence (SIC), qui nous permet d'atténuer les interférences, dans des réseaux de UNB. Nous avons fourni une analyse théorique de la performance des réseaux en considérant le SIC et l'interférence spectrale de UNB, pour le cas de mono-BS. La troisième contribution est l'amélioration de la performance des réseaux UNB, en exploitant la diversité de multi-BS. Nous avons fait une analyse théorique de performance en considérant multi-BS et selection combining (SC). En particulier, nous avons considéré que l’interférence vue par chaque BS est corrélée. Nous avons ainsi démontré mathématiquement que cette corrélation ne peut pas être supprimée dans des systèmes UNB. Ensuite, nous avons appliqué les technologies de la combinaison des signaux plus complexes comme MRC (max ratio combining) et EGC (equal gain combining), ainsi que le SIC à travers multi-BS. Nous avons évalué l'amélioration de performance que chaque technologie apporte, et les avons comparées. Nous avons souligné l'efficacité de ces technologies qui nous permettent d’obtenir des gains importants comparés au cas mono-BS (e.x. 125 fois plus de réduction d'erreur avec SIC globale). La dernière contribution est une validation expérimentale du modèle d'interférence spectrale de UNB, ainsi que la capacité des réseaux UNB, sur un testbed de radio FIT/Cortexlab. / Sigfox rises as a promising candidate dedicated for long-distance and low-power transmissions in the IoT backgrounds. Ultra Narrow Band (UNB), being the communication technology chosen by Sigfox, allows to transmit information through signals whose bandwidth is very limited, typically 100 Hz. Due to the imprecision restraint on electronic devices, it is impossible to transmit UNB signals in orthogonal channels. The natural radio access for this kind of system is thus random ALOHA, in both time and frequency domain. This random access can induce collisions which degrades the networks performance. The aim of this thesis is to characterize the capacity of UNB based networks, as well as to enhance its performance, by considering the randomness in time and frequency. The first contribution of the thesis, is the theoretical and numerical capacity evaluation under idealized and realistic channel conditions, for mono base station (BS) case. Under idealized conditions, we have quantified this capacity for generalized ALOHA case and extended for replications. We highlight the time-frequency duality in UNB systems, and that there exists an optimum replication number for a given network parameter set. Under realistic conditions, we have taken into account the specific spectral interference of UNB systems and propagation path loss (without and with Rayleigh fading) to characterize the performance, with the aid of stochastic geometry. The second contribution is the enhancement of UNB network performance in single BS case. We propose to use successive interference cancellation (SIC) in UNB networks, which allows to mitigate the interference. We have provided a theoretical analysis by considering both SIC and the spectral interference, for mono-BS case. We bring to light the efficiency of SIC in enhancing UNB system performance. The third contribution is the improvement of UNB systems, by exploiting the multiple BS diversity. An analytical performance evaluation considering the simplest selection combining is conducted. In particular, we consider the interference viewed by all the BSs are correlated. Then we apply more complex signal combining technologies such as MRC (max ratio combining) and EGC (equal gain combining), and even interference cancellation across multi-BS in UNB networks. We evaluate the performance improvement that each technology can bring, and compare them with each other. We highlight the efficiency of these multi-BS technologies which allow us to achieve significant performance enhancement compared to mono-BS (e.x. 125 times better performance with global SIC). Last but not least, we experimentally verify the the spectral interference model and network capacity on a cognitive radio testbed.

Identiferoai:union.ndltd.org:theses.fr/2018LYSEI069
Date26 September 2018
CreatorsMo, Yuqi
ContributorsLyon, Gorce, Jean-Marie
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0025 seconds