In spite of impressive recent progress, the aetiopathogenesis of Alzheimers disease (AD) remains incompletely understood. The distinctive neuropathological features of AD, in particular the plaques and tangles, have been the particular focus of most aetiological theories. It is well accepted that AD is a multifactorial disease, with alterations to a variety of brain structures and cell types, including neurons, glia and the brain vasculature. Studies of risk factors have revealed a diversity of genetic variables that interact with health, diet and lifestyle-related factors in the causation of AD. These factors influence the structure, aggregation and function of a set of proteins that are increasingly the focus of research. The work in this thesis has focused on the pathophysiological aspects of some of these proteins in a number of cellular compartments and brain. Several assays have been established and techniques utilized in the completion of this work, including; differential detergent fractionation of brain tissue, 1D and 2D PAGE, western blotting with chemiluminescence detection, ELISA assays of Abeta 1-40 and 1-42, quantitative ECNI GCMS of o- and m-tyrosine as well as metabolites of the kynurenine pathway, quantitative MALDI-TOF assay of hemorphins and LCMSMS based proteomics, to identify proteins with altered expression levels in AD relative to control brain tissue. A variety of regional differences have been observed in the biochemistry of the AD cortex which are probably the outcome of local response variations to AD pathology. One of the most consistent threads throughout this work has been an apparent resilience of the occipital lobe relative to the other brain regions, as reflected in lower overall levels of oxidative stress and increased levels of proteins associated with metabolic processes, neuronal remodeling and stress reduction.
Identifer | oai:union.ndltd.org:ADTP/257720 |
Date | January 2008 |
Creators | Poljak, Anne, Medical Sciences, Faculty of Medicine, UNSW |
Publisher | Publisher:University of New South Wales. Medical Sciences |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://unsworks.unsw.edu.au/copyright, http://unsworks.unsw.edu.au/copyright |
Page generated in 0.0019 seconds