La contribution relative du bruit de combustion au bruit global des moteurs aéronautiques augmente progressivement dû d'un coté à la réduction des autres sources et d'un autre à l'implémentation des nouvelles technologies de chambre de combustion pour la réduction des émissions de NOx. Deux mécanismes sont responsables de cette source de bruit : d'abord le bruit direct, dû aux ondes acoustiques générées par la flamme qui se propagent à la sortie du moteur d'avion, et ensuite le bruit indirect, généré par les ondes d'entropie quand elles sont accélérées et ralenties dans les étages de turbine. Dans ce travail, les modèles analytiques utilisés pour la propagation des ondes à travers les flux non-homogènes, y compris la génération de bruit indirect, sont révisés et étendus. Tout d'abord, le cas quasi-1D est étudié: la méthode analytique est étendue pour les fréquences non nulles et validée avec des méthodes numériques et des données expérimentales. Dans la seconde partie, la méthode analytique 2D dans le cas d'aubes de turbines compactes est étudiée et validée à l'aide de simulations numériques d'un rotor et d'un étage de turbine complète. Enfin, ces modèles sont combinés avec des simulations aux grandes échelles réactives et compressibles de chambres de combustion pour construire une approche hybride appelée CHORUS capable de prédire le bruit de combustion. / Combustion noise is increasing its relative contribution to aircraft noise, while other sources are being reduced and new low-NOx emission combustion chambers being built. Two mechanisms are responsible for this noise source: direct noise in which acoustic waves are generated by the flame and propagate to the outlet of the aero-engine, and indirect noise, where entropy waves generate noise as they are accelerated and decelerated in the turbine stages. In this work the analytical models used for the propagation of waves through non-homogeneous flows, including the generation of indirect noise, are revised and extended. In the first part, the quasi-1D case is studied, extending the analytical method to non-zero frequencies and validating the results with numerical methods and experimental data. In the second part, the 2D method for the case of compact turbine blades is studied and validated using numerical simulations of a rotating blade and of a complete turbine stage. Finally, in the third part of this thesis, these models are combined with reactive and compressible Large Eddy Simulations (LES) of combustion chambers to build a hybrid approach, named CHORUS, able to predict combustion noise.
Identifer | oai:union.ndltd.org:theses.fr/2013INPT0138 |
Date | 25 November 2013 |
Creators | Duran Garcia-Rama, Ignacio Luis |
Contributors | Toulouse, INPT, Poinsot, Thierry, Moreau, Stéphane |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0018 seconds