Return to search

Analytical and experimental studies of instability of an axial compression / Etudes analytiques et expérimentales de l'instabilité d'une compression axiale

Cette thèse présente l’étude analytique et expérimentale d’un système de compression axial constitue d’un compresseur, d’un plenum et d’une vanne de régulation du débit. Fondée sur le modèle de Moore-Greitzer, une approche analytique est utilisée par la suite pour interpréter les données expérimentales. Les analyses linéaires et non linéaires sont présentées, ainsi que les résultats obtenus par intégration numérique des équations du modèle non linéaire complet. Un modèle théorique simple pour les modes acoustiques observes est aussi présente. Dans les expériences, les mesures de pression ont été réalisées pour différents taux de rotation et différents vannages. Ceci a permis la détermination de l’augmentation de pression au travers du compresseur et du débit en utilisant un Venturi, ceux qui fournissent la courbe de fonctionnement du compresseur. Les fluctuations de pression sont mesurées par quatre microphones places en amont du compresseur. Nous n’avons pas observé de pompage, mais un décrochage tournant s’est produit quand le système était suffisamment vanne. Avant ceci, des fluctuations correspondant aux modes acoustiques de la conduite ont été trouvées. Au début du décrochage, une cellule de décrochage tournante d’amplitude croissante a été observée. Cependant, la cellule a rapidement éclaté, remplacée par des fluctuations aléatoires. Ainsi, pour le système de compression considéré, la situation de décrochage est mieux décrite comme étant aléatoire plutôt que rotative. Le traitement du signal (spectres en fréquence ainsi que les autocorrélations et corrélations croisées) a permis d’analyser les fluctuations de pression des modes acoustiques et du décrochage développé. Les modes acoustiques montrent des pics spectraux proches des valeurs prédites par la théorie. En présence de décrochage, le spectre est à large bande, et contient un pic de fréquence basse (∼20 Hz) suivi d’une queue s’étendant jusqu’à 1 kHz, bien au-dessus de la fréquence de rotation du rotor (∼150 Hz). Il apparait une gamme fréquentielle située entre le pic à basse fréquence et la chute à haute fréquence, dans laquelle le spectre évolue en loi de puissance. Les autocorrélations et corrélations croisées entre les différents microphones montrent des oscillations à ∼20 Hz. En appliquant un filtre passe-bas aux données, les fonctions de corrélations croisées des signaux filtres des différents microphones suggèrent l’existence d’une cellule rotative qui effectue une rotation complète en ∼0.05 s. Ceci pourrait expliquer le pic spectral a ∼20 Hz et les oscillations des fonctions de corrélation. De ce fait, les fluctuations de pression apparaissent comme contenant une forte composante aléatoire à haute fréquence, et une cellule rotative. La décorrelation du signal filtre quand la séparation en temps augmente indique que la cellule elle-même a un caractère aléatoire, plutôt qu’une forme et une vitesse rotative fixes comme dans une cellule de décrochage classique. / This thesis presents an analytical and experimental study of an axial compression system consisting of a compressor, plenum and throttle. The analysis is based on the Moore-Greitzer model, the results being later employed to interpret the experimental ones. Linear and weakly nonlinear analyses are presented, as are some results obtained by numerical integration of the fully nonlinear model equations. A simple theoretical model of the experimentally observed acoustic modes is also presented. In the experiments, pressure measurements were carried out for different rotation rates and throttle settings. This allowed the determination of the pressure rise across the compressor and the flow rate using a Venturi, yielding the compressor characteristic function. Pressure fluctuations were measured using four microphones placed upstream of the compressor. We did not observe surge, but rotating stall occurred when the system was sufficiently throttled. Prior to stall, fluctuations corresponding to acoustic duct modes were found. At stall onset, a rotating stall cell of growing amplitude was observed. However, the cell rapidly broke down and gave way to random fluctuations. Thus, for the given compression system, developed stall is perhaps better described as random, rather than rotating. Signal processing (frequency spectra, as well as auto- and cross-correlations) was used to analyse the pressure fluctuations of the acoustic modes and developed stall. The acoustic modes give spectral peaks located close to the expected theoretical values. In the presence of stall, the spectrum is broadband, having a low frequency (∼20 Hz) peak followed by a tail which extends up to ∼1 kHz, well above the rotation frequency (∼150 Hz) of the rotor. There appears to be a frequency range between the low-frequency peak and the high-frequency fall-off in which the spectrum approximates a power law. The autocorrelations and cross-correlations between different microphones show ∼20 Hz oscillations. Low pass filtering the data, the cross-correlation functions of the filtered signals of different microphones suggest a rotating cell which takes ∼0.05 s for a complete rotation. This could explain the ∼20 Hz spectral peak and oscillations of the correlation functions. Thus, the pressure fluctuations appear to consist of a strong high-frequency, random component and a rotating cell. Decorrelation of the filtered signal as separation time increases indicates that, rather than maintaining form and rotational velocity like a classical stall cell, the cell itself exhibits randomness.

Identiferoai:union.ndltd.org:theses.fr/2016LYSEC046
Date29 November 2016
CreatorsZhang, Lu
ContributorsLyon, Scott, Julian
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds