Return to search

MECHANISTIC DETAILS OF THE PH-DEPENDENT ASSOCIATION OF BOTULINUM NEUROTOXIN WITH MEMBRANES

Botulinum neurotoxin (BoNT) belongs to a large class of toxic proteins that act by enzymatically modifying cytosolic substrates within eukaryotic cells. The process by which a catalytic moiety is transferred across a membrane to enter the cytosol is not understood for any such toxin. BoNT is known to form pH-dependent pores important for the translocation of the catalytic domain into the cytosol. As a first step toward understanding this process, we have investigated the mechanism by which the translocation domain of BoNT associates with a model liposome membrane. We report conditions that allow pH-dependent proteoliposome formation and identify a sequence at the translocation domain C-terminus that is protected from proteolytic degradation in the context of the proteoliposome. Fluorescence quenching experiments suggest that residues within this sequence move to a hydrophobic environment upon association with liposomes. Electron paramagnetic resonance analyses of spin labeled mutants reveal major conformational changes in a distinct region of the structure upon association and indicate the formation of an oligomeric membrane-associated intermediate. Together, these data support a model of how BoNT orients with membranes in response to low pH.

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-08252011-124331
Date06 September 2011
CreatorsMushrush, Darren
ContributorsD. Borden Lacy, Michael R. Waterman, Richard N. Armstrong, Hassane S. Mchaourab, Charles R. Sanders
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu/available/etd-08252011-124331/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0016 seconds