Return to search

Composite and Cascaded Generalized-K Fading Channel Modeling and Their Diversity and Performance Analysis

The introduction of new schemes that are based on the communication among nodes has motivated the use of composite fading models due to the fact that the nodes experience different multipath fading and shadowing statistics, which subsequently determines the required statistics for the performance analysis of different transceivers.



The end-to-end signal-to-noise-ratio (SNR) statistics plays an essential role in the determination of the performance of cascaded digital communication systems. In this thesis, a closed-form expression for the probability density function (PDF) of the end-end SNR for independent but not necessarily identically distributed (i.n.i.d.) cascaded generalized-K (GK) composite fading channels is derived. The developed PDF expression in terms of the Meijer-G function allows the derivation of subsequent performance metrics, applicable to different modulation schemes, including outage probability, bit error rate for coherent as well as non-coherent systems, and average channel capacity that provides insights into the performance of a digital communication system operating in N cascaded GK composite fading environment.



Another line of research that was motivated by the introduction of composite fading channels is the error performance. Error performance is one of the main performance measures and derivation of its closed-form expression has proved to be quite involved for certain systems. Hence, in this thesis, a unified closed-form expression, applicable to different binary modulation schemes, for the bit error rate of dual-branch selection diversity based systems undergoing i.n.i.d. GK fading is derived in terms of the extended generalized bivariate Meijer G-function.

Identiferoai:union.ndltd.org:kaust.edu.sa/oai:repository.kaust.edu.sa:10754/134733
Date12 1900
CreatorsAnsari, Imran Shafique
ContributorsAlouini, Mohamed-Slim, Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division, Al-Ahmadi, Saad, Shihada, Basem
Source SetsKing Abdullah University of Science and Technology
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Rights2015-01-01, At the time of archiving, the student author of this thesis opted to temporarily restrict access to it. The full text of this thesis became available to the public after the expiration of the embargo on 2015-01-01.

Page generated in 0.0023 seconds