Return to search

BIOMETRIC IDENTIFICATION USING ELECTROCARDIOGRAM AND TIME FREQUENCY FEATURE MATCHING

The main goal of this thesis is to test the feasibility of human identification using the Electrocardiogram (ECG). Such biomedical signal has several key advantages including its intrinsic nature and liveness indicator which makes it more secure compared to some of the existing conventional and traditional biometric modalities. In compliance with the terms and regulations of McMaster University, this work has been assembled into a sandwich thesis format which consist of three journal papers. The main idea of this work is to identify individuals using distance measurement techniques and ECG feature matching. In addition, we gradually developed the content of the three papers.
In the first paper, we started with the general criteria for developing ECG based biometric systems. To explain, we proposed both fiducial and non-fiducial approaches to extract the ECG features followed by providing comparative study on the performance of both approaches. Next, we applied non-overlapped data windows to extract the ECG morphological and spectral features. The former set of features include the amplitude and slope differences between the Q, R and S peaks. The later features include extracting magnitudes of the ECG frequency components using short time Fourier Transform (STFT). In addition, we proposed a methodology for QRS detection and segmentation using STFT and binary classification of ECG fiducial features.
In the second paper, we proposed a technique for choosing overlapped data windows to extract the abovementioned features. Namely, the dynamic change in the ECG features from heart beats to heartbeat is utilized for identification purposes. To improve the performance of the proposed techniques we developed Frechet-mean based classifier for this application. These classifiers exploit correlation matrix structure that is not accounted for in classical Euclidean techniques. In addition to considering the center of the cluster, the Frechet-mean based techniques account for the shape of the cluster as well.
In the third paper, the thesis is extended to address the variability of ECG features over multiple records. Specifically, we developed a multi-level wavelet-based filtering system which utilizes features for multiple ECGs for human identification purposes. In addition, we proposed a soft decision-making technique to combine information collected from multi-level identification channels to reach a common final class. Lastly, we evaluated the robustness of all our proposed methods over several random experiments by changing the testing data and we achieved excellent results.
The results of this thesis show that the ECG is a promising biometric modality. We evaluated the performance of the proposed methods on the public ECG ID database because it was originally recorded for biometric purposes. In addition, to make performance evaluation more realistic we used two recordings of the same person obtained under possibly different conditions. Furthermore, we randomly changed both the training and testing data which are obtained from the full ECG records for performance evaluation purposes.
However, it is worth mentioning that in all parts of the thesis, various parameters settings are presented to support the main ideas and it is subject to change according to human activity and application requirements. Finally, the thesis concludes with a comparison between all the proposed methods, and it provides suggestions on few open problems that can be considered for future research as extension to the work that has been done in this thesis. Generally, these problems are associated with the constraints on computational time, data volume and ECG clustering. / Thesis / Doctor of Philosophy (PhD)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/28420
Date January 2023
CreatorsBiran, Abdullah
ContributorsJeremic, Aleksander, Biomedical Engineering
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0022 seconds