Return to search

Metodologia de extração automática de características da mão para a estimação da idade óssea utilizando redes neurais artificiais no processo de decisão / Methodology of automatic extraction of hand characteristics for the estimation of the bone age using artificial neural nets in the decision process

Este trabalho tem como objetivo principal apresentar uma metodologia para estimação da idade óssea baseada no método de Eklof & Ringertz utilizando redes neurais artificiais como classificador, com a finalidade de auxiliar o diagnóstico do radiologista e diminuir a dimensionalidade dos dados analisados pela rede neural, diminuindo a quantidade de centros de ossificação do método utilizado. A metodologia contém um processo automático de extração de características de imagens radiográficas da mão. Na etapa de classificação é utilizada a rede neural perceptron multicamadas, com o algoritmo de treinamento de Levenberg-Marquardt. As características extraídas da imagem são utilizadas como entrada para a rede neural, e os dados do Atlas de Eklof & Ringertz são utilizados como matriz de treinamento. Os resultados da etapa de classificação chegaram a uma taxa de 95% de acerto ao utilizar um centro de ossificação a menos que o método de Eklof & Ringertz simplificado / Grounded an Eklof & Ringertz’s method and using artificial neural networks as classifier, the main purpoise of this work is to present a methodology to reckon the bone age to the effect to help the radiologist’s diagnosis and to reduce the dimensionality of the data analyzed by neural network, reducing the quantity of the ossification’s centers of the used method. The methodology holds an automatic process to the hands radiographies image’s features. The multilayer perceptron neural network is used in the classification stage, with the Levemberg-Marquardt’s training algorithm. The taken image’s features are used as an input to the neural network, and Eklof & Ringertz’s Atlas data are used as training source. The results of the classification stage reached a rate of 95% of accuracy when applying the Eklof & Ringertz’s simplified method, excluding one of the ossification center

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-12072006-212035
Date26 May 2006
CreatorsQueiroz, Alini da Cruz
ContributorsRodrigues, Evandro Luis Linhari
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0024 seconds