Repetitive injuries have been a major obstacle in production assembly lines all over the world. These injuries have greatly reduced the production efficiency of assembly plants and also negatively affected human health. Various attempts have been made by the Canadian government through the Workers Compensation Board (WCB) to prevent the occurrences of these injuries because of the associated cost and effects. These attempts failed as the cost of injuries acquired in the workplace continues to increase. For example, in New Zealand alone, the total cost of accidents in 2005, is estimated at $300 million (Accident Compensation Corporation, 2005). In Canada, the number of accepted claims alone amount to 15623 people (Workers Compensation Board of Canada, 2003).<p>A human body can be viewed as a mechanism that is composed of links and joints controlled by a central nervous system and are subject to stress, strain, fatigue and failure as can be observed on a regular industrial robot. But unlike the robot which is designed proactively, these stress and strain factors could be because of certain conditions such as inappropriate work posture, poor assembly line design, excessive workload, and poor work conditions. <p>Often, it is almost uncertain to make a conceptual assessment of the appropriate ergonomic design of a production system before the assembly line is built and put in use. This research will propose a general computer-based methodology for analysis of work injuries given an assembly line where human workers perform repetitive operations. The general methodology integrates sophisticated computer software systems for biomechanics simulation with various manual measurement techniques and methods. The research further proposed a simple and handy synthesis method with which problematic areas of assembly line design, with special reference to human work design can be identified and improved. The proposed methodology for analysis and synthesis is then implemented in a real assembly line to understand the effects of different work activities on the human body. Various software packages and motion tracking techniques will be considered prior to the actual implementation of the final methodology. A rule of thumb table will also be presented as a guideline for the re-design process. The research also proposed a general procedure and specific formula within a specific regional context to calculate the costs of worker injuries in real-life assembly system. This formula thus allows us to obtain the total cost of injuries in a production assembly line, making it possible to optimize the design and operation of the assembly line.
Identifer | oai:union.ndltd.org:USASK/oai:usask.ca:etd-04302007-124509 |
Date | 01 May 2007 |
Creators | Emodi, Chukwumobi Tagbo |
Contributors | Schoenau, Greg J., Chen, X. B. (Daniel), Zhang, W. J. (Chris) |
Publisher | University of Saskatchewan |
Source Sets | University of Saskatchewan Library |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://library.usask.ca/theses/available/etd-04302007-124509/ |
Rights | unrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.0021 seconds