Return to search

Distinguishing Dynamical Kinds: An Approach for Automating Scientific Discovery

The automation of scientific discovery has been an active research topic for many years. The promise of a formalized approach to developing and testing scientific hypotheses has attracted researchers from the sciences, machine learning, and philosophy alike. Leveraging the concept of dynamical symmetries a new paradigm is proposed for the collection of scientific knowledge, and algorithms are presented for the development of EUGENE – an automated scientific discovery tool-set. These algorithms have direct applications in model validation, time series analysis, and system identification. Further, the EUGENE tool-set provides a novel metric of dynamical similarity that would allow a system to be clustered into its dynamical regimes. This dynamical distance is sensitive to the presence of chaos, effective order, and nonlinearity. I discuss the history and background of these algorithms, provide examples of their behavior, and present their use for exploring system dynamics. / Master of Science / Determining why a system exhibits a particular behavior can be a difficult task. Some turn to causal analysis to show what particular variables lead to what outcomes, but this can be time-consuming, requires precise knowledge of the system’s internals, and often abstracts poorly to salient behaviors. Others attempt to build models from the principles of the system, or try to learn models from observations of the system, but these models can miss important interactions between variables, and often have difficulty recreating high-level behaviors. To help scientists understand systems better, an algorithm has been developed that estimates how similar the causes of one system’s behaviors are to the causes of another. This similarity between two systems is called their ”dynamical distance” from each other, and can be used to validate models, detect anomalies in a system, and explore how complex systems work.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/101659
Date02 July 2019
CreatorsShea-Blymyer, Colin
ContributorsComputer Science, Jantzen, Benjamin C., Huang, Bert, Karpatne, Anuj, Prakash, B. Aditya
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0025 seconds