To effectively design systems of microchannels it is necessary for scientists and engineers to understand thermal transport characteristics of microchannels. To experimentally determine the convective heat transfer coefficient of microchannels it is necessary to measure both the bulk and surface temperature fields. This investigation aims to develop a technique, named Total Internal Reflection Fluorescent Micro-Thermometry (TIR-FMT), to measure the temperature of water within several hundred nanometers of a wall--effectively, the surface temperature of the wall. In TIR-FMT, an evanescent-wave is generated in the water near the wall. The intensity of this evanescent-wave decays exponentially with distance from the wall. A fluorophore if illuminated by the evanescent-wave can absorb a photon. Excited fluorophores subsequently emit red-shifted photons, which are called fluorescence. The probability of a fluorescent emission is temperature-dependent. Therefore, by monitoring the intensity of the fluorescence a correlation can be made to the temperature of the region of illumination. Using the TIR-FMT technique the temperature dependence of the fluorescence intensity from buffered fluorescein (pH=9.2) was determined to be 1.35%/C. TIR-FMT can be used to measure the temperature of a fluorophore solution within 600 nm of a wall across a temperature range of 12.5-55C. The average uncertainties (95% confidence) of the temperature measured was determined to be 2.3C and 1.5C for a single 1.5x1.5 and #956;m pixel and the entire 715x950 and #956;m viewfield. By spatial averaging, average uncertainties of 2.0C and 1.8C were attained with spatial resolutions of 16x16 and 100x100 and #956;m, respectively.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/14530 |
Date | 26 March 2007 |
Creators | Suda-Cederquist, Keith David |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Detected Language | English |
Type | Thesis |
Page generated in 0.0031 seconds