Return to search

Structural and electronic properties of hydrogenated nanocrystalline silicon employed in thin film photovoltaics

xxi, 134 p. : ill. (some col.) / Hydrogenated nanocrystalline silicon (nc-Si:H) is a semiconducting material that is very useful as a thin film photovoltaic. A mixture of amorphous and crystalline silicon components, nc-Si:H shows good carrier mobilities, enhanced infrared response, and high resilience to light-induced degradation of its electronic properties, a thermally reversible degenerative phenomenon known as the Staebler-Wronski Effect (SWE). However, production of nc-Si:H is difficult in part because the structural and electronic properties of this material are not well understood. For example, its electronic properties have even been observed by some authors to improve upon prolonged light exposure, in direct opposition to the SWE observed in purely amorphous thin film silicon.

We used several junction capacitance based measurements together with characterization methods such as Raman spectroscopy and secondary ion mass spectroscopy to better understand the structure/function relationships present in nc-Si:H. Drive level capacitance profiling (DLCP) was used to determine densities, spatial distributions, and energies of deep-gap defects. Transient photocapacitance (TPC) and transient photocurrent (TPI) were used to characterize optical transitions and the degree of minority carrier collection. Materials had crystallite volume fractions between 20% and 80% and were deposited using RF and modified VHF glow discharge (PECVD) processes at United Solar Ovonic, LLC. Measurements were made as a function of metastable state: annealed states were produced by exposing the material to temperatures above 370K for 0.5h and the lightsoaked state was produced by exposure to 200mW/cm 2 610nm long-pass filtered light from an ELH halogen source for 100h.

We identified two deep defects in nc-Si:H. A primary defect appearing throughout the material at an electronic transition energy of roughly 0.7eV below the conduction band, and a second defect 0.4eV below the conduction band which was localized near the p/i junction interface. Results suggested that the deeper defect is related to the presence of oxygen and is located in grain boundary regions. The energy depth of this defect appears also to be somewhat dependent on metastable state. This phenomenon, and the universal decrease in minority carrier collection upon lightsoaking are accounted for in a model of electronic behavior we have developed over the course of this study. / Committee in charge: Dr. Miriam Deutsch, Chairperson;
Dr. J. David Cohen, Advisor;
Dr. Roger Haydock, Member;
Dr. Heiner Linke, Member
Dr. Mark Lonergan Outside Member

Identiferoai:union.ndltd.org:uoregon.edu/oai:scholarsbank.uoregon.edu:1794/11255
Date03 1900
CreatorsHugger, Peter George, 1980-
PublisherUniversity of Oregon
Source SetsUniversity of Oregon
Languageen_US
Detected LanguageEnglish
TypeThesis
RelationUniversity of Oregon theses, Dept. of Physics, Ph. D., 2011;

Page generated in 0.0126 seconds