Return to search

Křemíkové nanokrystaly, fotonické struktury a optický zisk / Silicon nanocrystals, photonic structures and optical gain

Silicon nanocrystals (SiNCs) of sizes below approximately 5 nm are a material with an efficient room-temperature photoluminescence (PL) and optical gain. Optical gain is a pre- requisite for obtaining stimulated emission from a pumped material, and the achievement of stimulated emission (and lasing) from Si-based nanostructures is of particular interest of the field of silicon photonics. The aim of this work was (i) to investigate fundamental optical properties of SiNCs, (ii) to design and prepare a photonic crystal with enhanced light ex- traction efficiency and (iii) to explore a possibility of enhancing optical gain of light-emitting SiNCs by combining them with a two-dimensional photonic crystal. First, free-standing oxide (SiOx/SiO2)-passivated SiNCs were prepared by electrochemical etching of a Si wafer. Their optical properties were studied by employing time-resolved spectroscopy, also at cryogenic temperatures. The fast blue-green emission band of these SiNCs was linked with the quasi- direct recombination of hot electrons and holes in the vicinity of the Γ-point. Furthermore, the spectral shift of the slow orange-red band (of these SiNCs) as a function of temperature was explained on the basis of an interplay between tensile strain and bulk Si temperature-induced indirect bandgap shift. The...

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:326206
Date January 2014
CreatorsOndič, Lukáš
ContributorsHerynková, Kateřina, Oswald, Jiří, Lauret, Jean-Sebastien
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.002 seconds