Return to search

ROLE OF CYCLOPHILIN D IN SECONDARY SPINAL CORD AND BRAIN INJURY

In the hours and days following acute CNS injury, a secondary wave of events is initiated that exacerbate spinal tissue damage and neuronal cell death. A potential mechanism driving these secondary events is opening of the mitochondrial permeability transition pore (mPTP) and subsequent release of several cell death proteins. Previous studies have shown that inhibition of cyclophilin D(CypD), the key regulating component in mPTP opening, was protective against insults that induce necrotic cell death. We therefore hypothesized that CypD-null mice would show improved functional and pathological outcomes following spinal cord injury (SCI) and traumatic brain injury (TBI). Moderate and severe spinal contusion was produced in wild-type (WT) and CypD-null mice at the T-10 level using the Infinite Horizon impactor. Changes in locomotor function were evaluated using the Basso Mouse Scale (BMS) at 3 days post-injury followed by weekly testing for 4 weeks. Histological assessment of tissue sparing and lesion volume was performed 4 weeks post SCI. Calpain activity, measured by calpain-mediated spectrin degradation, was assessed in moderate injury only by western blot 24 hours post SCI. Results showed that following moderate SCI, CypD-null mice had no significant improvement in locomotor recovery or tissue sparing compared to wild-type mice. Following severe SCI, CypD-null mice showed significantly lower locomotor recovery and decreased tissue sparing compared to WT mice. Calpain-mediated spectrin degradation was not significantly reduced in CypD-null mice compared to WT mice 24h post moderate SCI. The lack of protective effects in CypD-null mice suggests that more dominant mechanisms are involved in the pathology of SCI. In addition, CypD may have a pro survival role that is dependent on the severity of the spinal cord injury.

Identiferoai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:gradschool_diss-1733
Date01 January 2009
CreatorsClark, Jordan Mills
PublisherUKnowledge
Source SetsUniversity of Kentucky
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of Kentucky Doctoral Dissertations

Page generated in 0.0022 seconds