Return to search

POPC Phospholipid Bilayer Failure Under Biaxial Deformations Using Molecular Dynamics

Mechanical injuries to the cell often lead to disruptions of the cell’s phospholipid bilayer membrane and potential detrimental effects including cell death. Understanding the mechanical states required to disrupt the phospholipid bilayer would result in better multiscale constitutive models and further knowledge of cell injury. The objectives of this research were to perform biaxial deformations of the phospholipid bilayer to quantify phospholipid bilayer disruption and to identify potential parameters that can be used in multiscale constitutive equations. We show that the von Mises stress, 26.6-61.1, increases linearly with the von Mises strain rate, 1.7e8-6.7e8, and that the strain at failure is dependent on the stress state with non- and equibiaxial being the most detrimental when failing at <.73 von Mises strain. Understanding the effects of nanoscale mechanical trauma to the cell provides a better understanding of cell injury and may provide insight regarding initiation and progression of cell damage.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-4561
Date15 August 2014
CreatorsMurphy, Michael Anthony
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0019 seconds