During the last decade, Raman microscopy is experiencing rapid development and increasingly applied in biological and medical systems. Especially, stimulated Raman scattering (SRS) microscopy, which significantly improves the sensitivity of Raman scattering through stimulated emission, has allowed direct visualization of many species that are previously challenging with conventional fluorescence imaging. Compared to fluorescence, SRS imaging requires no label or small label on the target molecule, thus with minimal perturbation to the molecule of interest. Moreover, Raman scattering is free from complicated photophysical and photochemical processes such as photobleaching, and has intrinsically narrower linewidth than fluorescence emission. This allows multiplexed Raman imaging with minimal spectral crosstalk and excellent photo-stability.
To achieve the full potential of Raman microscopy, vibrational probes have been developed for Raman imaging. Multiple Raman probes with a few atoms in size are applied in Raman imaging with high sensitivity and specificity. An overview of both fluorescence and Raman microscopy and their imaging probes is given in Chapter 1 with a brief discussion on the SRS theory.
Built on the current progress of Raman microscopy and vibrational probes, I write on my research in the development of carbon-deuterium, alkyne and nitrile probes for visualizing choline metabolism (Chapter 2), glucose uptake activity (Chapter 3), complex brain metabolism (Chapter 4) and polymeric nanoparticles (Chapter 5) in live cells and tissues, as well as the development of polyyne-based vibrational probes for super-multiplexed imaging, barcoding and analysis (Chapter 6).
Identifer | oai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/D88S52BN |
Date | January 2017 |
Creators | Hu, Fanghao |
Source Sets | Columbia University |
Language | English |
Detected Language | English |
Type | Theses |
Page generated in 0.0018 seconds