The goal of the project is to develop, build, and test a modular steel structure that can be tested on an educational shaking table to demonstrate structural dynamic and earthquake engineering principles. The advantage of the structure is that it can be tested into its non-linear range and yielded parts can easily be replaced for subsequent tests. The steel modular structure represents a multi-story moment resisting frame and is comprised of sheet metal beams and columns bolted to “rigid” steel angles. This structure is tested on a unidirectional shaking table, viz. “Quanser Shake Table II”. The structure is designed to achieve a specific mode of failure through non-linear analysis. A non-linear pushover analysis is carried out to determine stiffness and strength of the structure as well as potential hinge locations. Eigen-value analysis is undertaken to determine all the natural periods and frequencies that will help in understanding its dynamic response. The structure is analyzed and tested for various ground motions to study the effects of an earthquake on a multi-storied frame. Educational modules provide a set of experiments that can be easily performed on the test structure. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2010-12-2464 |
Date | 17 February 2011 |
Creators | Inamdar, Nikhil Jayant |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | thesis |
Format | application/pdf |
Page generated in 0.0018 seconds