Return to search

Coagulation and Redispersion of CO2-Switchable Polymer Latexes of Low Glass Transition Temperatures

In this thesis, copolymer latexes comprised of various fractions of methyl methacrylate (MMA) and butyl acrylate (BA) were synthesized through surfactant-free emulsion polymerization. A carbon dioxide responsive comonomer, 2-(diethyl)aminoethyl methacrylate (DEAEMA) was also used with an equimolar amount of hydrochloric acid (HCl) to promote its partitioning into the water phase. Changing the MMA/BA fraction gave control over the resulting glass transition temperature of the particles. Following polymerization, the particles from the resulting latexes could be effectively coagulated be adding a small amount of caustic soda, and could be easily separated from water. After washing the particles with deionized water, CO2-redispersibility of the latex particles was evaluated as a function of their respective glass transition temperature. It was determined that coagulated particles higher in MMA content could be easily redispersed into carbonated water with the aid of ultrasonication, preparing stable latexes of the same solids content. For latex particles with a glass transition temperature below ambient conditions, coagulation led to the fusion of individual particles, which inhibited their ability to be redispersed. By conducting the coagulation and redispersion cycles at temperatures cold enough for the BA-rich particles to be below their glass transition temperature, these same latex particles could be effectively redispersed. The relationship between the glass transition temperature of the latexes and their CO2-redispersibility provides guidance from a practical sense for the applicability of CO2-sensitive amine-functionalized molecules in developing industrially useful CO2-redispersible latex products. / Thesis / Master of Applied Science (MASc) / This work examines special type of coagulatable and redispersible latex paint that could potentially reduce the costs in storing and transporting latex paint products. After synthesizing the latex, the nanoscopic polymer particles that make up the latex could be easily coagulated by adding a small amount of sodium hydroxide. Following this, water could be removed and a condensed form of the paint was obtained. The ability to redisperse the particles back into carbonated water was subsequently examined based on the softness of the polymer particles by synthesizing a series of latexes with different fractions of methyl methacrylate (MMA) and butyl acrylate (BA). After synthesis, the latexes that contained higher fractions of MMA were comprised of particles that were less soft than the BA-rich latexes, which made the redispersibility of these particles much easier. Upon coagulation, BA-rich particles fused together upon contact and could not be separated, hence inhibiting their redispersibility. When these same BA-rich latex particles were coagulated at colder temperatures, fusion was inhibited and the redispersibility of particles was greatly improved. Overall, the particles were found to be redispersible if the glass transition temperature of polymer chains within the particles was lower than ambient temperature. Since softer polymer particles are often used for latex paint-based applications, this work provides important and relevant insight in the development of industrially useful CO2-redispersible products.

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/18431
Date11 1900
CreatorsGariepy, Steven Daniel
ContributorsZhu, Shiping, Chemical Engineering
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0013 seconds