The aims of this work were two-fold - to enhance the 'latent functionality' of a silicon centre by expanding the range of functionalisation reactions available to such compounds, and to develop novel silicon-tethered transformations in order to increase the utility of this attractive synthetic strategy. 1. Aryle Silane Oxidation. Building upon the earlier work of Tamao and co-workers, we have developed a mild, functional group-tolerant oxidation of arylsilanes, allowing a wide range of phenols to be readily accessed. One key insight uncovered during this work was the observation that this oxidation could be acheived with sub-stoichiometric quantities of a fluoride promoter, thus allowing several TBS-protected substrates to be oxidised without any concomitant loss of the protecting group. 2. Silicon-Tethering Methodology. In order to utilise our recently acquired expertise in the field of alkoxy arylsilane synthesis, we sought to develop a novel silicon-tethered iron-catalysed biaryl coupling. Unfortunately, despite our considerable efforts, this methodology was found to suffer from reproducibility issues, and thus our attentions subsequently turned to silicon-tethered palladium- and platinum-catalysed processes. These investigations proved to be more fruitful, with the palladium-catalysed methodology affording a small range of silicon-tethered products. Finally, a novel platinum-catalysed hydro-silylation/electrocyclisation cascade was also developed, allowing a substituted arene to be accessed from a dienyne precursor.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:558691 |
Date | January 2011 |
Creators | Bracegirdle, Sonia |
Contributors | Anderson, Edward A. |
Publisher | University of Oxford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://ora.ox.ac.uk/objects/uuid:539ab35d-3f5b-4cf9-898b-0d390bc34da2 |
Page generated in 0.0023 seconds