Return to search

New trigonometric classes of probabilistic distributions

Submitted by Mario BC (mario@bc.ufrpe.br) on 2016-08-01T12:46:49Z
No. of bitstreams: 1
Luciano Souza.pdf: 1424173 bytes, checksum: 75d7ff2adb5077203e1371925327b71e (MD5) / Made available in DSpace on 2016-08-01T12:46:49Z (GMT). No. of bitstreams: 1
Luciano Souza.pdf: 1424173 bytes, checksum: 75d7ff2adb5077203e1371925327b71e (MD5)
Previous issue date: 2015-11-13 / In this thesis, four new probabilistic distribution classes are presented and investigated: sine, cosine, tangent and secant. For each of which a new kind of distribution was created, which were used for modelling real life data.By having an exponential distribution to compare the biases, a numerical simulation was obtained, making it possible to verify that the bias tends to zero as the sample size is increased. In addition to that, some numerical results for checking maximum likelihood estimates, as well as the results for finite samples, were obtained, just as much as several class properties and their respective distributions were also obtained, along with the expansions, maximum likelihood estimates, Fisher information, the first four moments, average, variance, skewness, and kurtosis, the generating function of moments and Renyi’s entropy. It was evidenced that all distributions have shown good fit when applied to real life data, when in comparison to other models. In order to compare the models, the Akaike Information Criterion (AIC), the Corrected Akaike Information Criterion (CAIC), the Bayesian Information Criterion (BIC), the Hannan Quinn Information Criterion (HQIC) were used, along with two other main statistic sources: Cramer-Von Mises and Anderson-Darling. As a final step, the results of the analyses and the comparison of the results are brought up, as well as a few directions for future works. / Nesta tese apresentamos e investigamos quatro novas classes trigonométricas de distribuições
probabilísticas. As classes seno, cosseno, tangente e secante. Para cada uma das novas classes foi criada uma nova distribuição. Estas quatro novas distribuições foram usadas na modelagem de dados reais. Obtivemos uma simulação numérica, usando como base a distribuição exponencial, para se comparar os vicios (bias) e verificamos que, a medida que aumentamos o tamanho da amostra, o bias tende a zero. Alguns resultados numéricos para ver estimativas de máxima verossimilhança e os resultados para amostras finitas foram obtidos. Várias propriedades das classes e as suas distribuições foram obtidos. Obtemos as expansões, as estimativas de máxima verossimilhança, informações de Fisher, os quatro primeiros momentos, média, variância, assimetria e curtose, a função geradora de momentos e a entropia Rényi. Mostramos que todas as distribuições têm proporcionado bons ajustes quando aplicadas a dados
reais, em comparação com outros modelos. Na comparação dos modelos foram utilizados: o Akaike Information Criterion (AIC), o Akaike Information Criterion Corrigido (CAIC), a informação Bayesian Criterion (BIC), o critério de informação Hannan Quinn (HQIC) e duas das principais estatísticas também foram utilizadas: Cramer -von Mises e Anderson-Darling. Por fim, apresentamos os resultados da análise e comparação dos resultados, e orientações para trabalhos futuros.

Identiferoai:union.ndltd.org:IBICT/oai:tede2:tede2/5127
Date13 November 2015
CreatorsSOUZA, Luciano
ContributorsOLIVEIRA JUNIOR, Wilson Rosa de, BRITO, Cícero Carlos Ramos de, FERREIRA, Tiago Alessandro Espinola, RAMOS, Manoel Wallace Alves, SILVA, Frank Sinatra Gomes da, SILVA, Ronaldo Venâncio da
PublisherUniversidade Federal Rural de Pernambuco, Programa de Pós-Graduação em Biometria e Estatística Aplicada, UFRPE, Brasil, Departamento de Estatística e Informática
Source SetsIBICT Brazilian ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRPE, instname:Universidade Federal Rural de Pernambuco, instacron:UFRPE
Rightsinfo:eu-repo/semantics/openAccess
Relation768382242446187918, 600, 600, 600, -6774555140396120501, -5836407828185143517

Page generated in 0.0031 seconds