Seja K um conjunto de Cantor. Neste trabalho apresentamos dois teoremas relacionados a densidade do conjunto das dinâmicas simbólicas. No caso de endomorfismos provamos que, dado uma dinâmica T : K K, existe uma T : K K próxima a T, tal que toda órbita é finalmente periódica. Já no caso de homeomorfismos, mostramos que, dado uma dinâmica T : K K, existe uma T : K K próxima a T, tal que o w-limite de toda órbita de T é uma órbita periódica. Em particular, mostramos que, em ambos os casos, todas as medidas ergódicas estão suportadas em órbitas periódicas. / Let K be a Cantor set. In this work we present two theorems related to the density of symbolic dynamics. We prove that given an endomorphism T : K K then there exists an endomorphism ~ T : K K close to T such that every orbit is finally periodic. We also prove that given a homeomorphism T : K K then there exists a homeomorphism ~ T : K K close to T such that the w-limit of every orbit is a periodic orbit. In particular, we have shown, in both cases, that all ergodic measures have support on periodic orbits.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-15122013-231341 |
Date | 25 October 2013 |
Creators | Batista, Tatiane Cardoso |
Contributors | Tal, Fabio Armando |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0024 seconds