Return to search

A Ladar-Based Pose Estimation Algorithm for Determining Relative Motion of a Spacecraft for Autonomous Rendezvous and Dock

Future autonomous space missions will require autonomous rendezvous and docking operations. The servicing spacecraft must be able to determine the relative 6 degree-of-freedom (6 DOF) motion between the vehicle and the target spacecraft. One method to determine the relative 6 DOF position and attitude is with 3D ladar imaging. Ladar sensor systems can capture close-proximity range images of the target spacecraft, producing 3D point cloud data sets. These sequentially collected point-cloud data sets were then registered with one another using a point correspondence-less variant of the Iterative Closest Points (ICP) algorithm to determine the relative 6 DOF displacements. Simulation experiments were performed and indicated that the mean-squared error (MSE), angular error, mean, and standard deviations for position and orientation estimates did not vary as a function of position and attitude and meet most minimum angular and translational error requirements for rendezvous and dock. Furthermore, the computational times required by this algorithm were comparable to previously reported variants of the point-to-point and point-to-plane-based ICP variants for single iterations when the initialization was already performed.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-1068
Date01 May 2008
CreatorsFenton, Ronald Christopher
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.002 seconds