X chromosome inactivation (XCI), the mammalian form of dosage compensation, is a canonical example of epigenetic regulation and involves the transcriptional repression of nearly an entire chromosome (Xi) while preserving the transcriptional activity of its homologue (Xa) in females. Since the initial report describing a dense nuclear cytological feature in female feline neurons and Mary Lyon’s subsequent hypothesis of random X chromosome inactivation as a means of compensating for the lack of two X chromosomes in males, XCI has yielded decades of insights into the mechanisms of epigenetic regulation. This dissertation focuses on the three-dimensional organization of the Xi and the functional potential of large tandem repeats. The large X-linked tandem repeat, DXZ4, adopts a euchromatic conformation on the Xi in contrast to the largely heterochromatic chromosome and is able to form CTCF-dependent interactions with other euchromatic repeats exclusively on inactive X chromosome in females. We demonstrate here that DXZ4 has a critical role in maintaining the three-dimensional organization of the Xi as well as the separation of multi-megabase domains containing different types of heterochromatin. While characterizing the genomic interval of DXZ4, we uncovered transcriptional activity corresponding to two novel, long non-coding RNAs (lncRNAs) which originate on opposite sides of the DXZ4 and are transcribed antisense to one another. Both of these lncRNAs traverse the array in human embryonic stem cells (hESCs). Developmentally associated transcription suggests a potential connection between their transcription activity and maintenance of a heterochromatic DXZ4 on the Xa and male X prior to differentiation. Mouse and human genomes largely share the same gene content in accordance with Ohno’s law; however, the mouse genome has undergone rearrangements involving large syntenic blocks and has acquired several multi-megabase, lineage-specific regions of repetitive DNA that are absent in human. To further our understanding of the mouse inactive X chromosome and highlight another difference between human and mouse XCI, we characterized an approximately 20-Mb repeat that, similar to DXZ4, displays marks of euchromatin on the Xi and conversely displays marks of heterochromatin on the Xa. Overall, this work gives new insight into the function and epigenetic regulation of macrosatellites as well as the relationship between higher-order chromatin organization and heterochromatin maintenance of the Xi. / A Dissertation submitted to the Department of Biological Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy. / Fall Semester 2017. / December 4, 2017. / Includes bibliographical references. / Brian P. Chadwick, Professor Directing Dissertation; Myra M. Hurt, University Representative; Karen M. McGinnis, Committee Member; Wu-Min Deng, Committee Member; Hank W. Bass, Committee Member.
Identifer | oai:union.ndltd.org:fsu.edu/oai:fsu.digital.flvc.org:fsu_653399 |
Contributors | Darrow, Emily M. (Emily Michelle) (author), Chadwick, Brian P. (professor directing dissertation), Hurt, Myra M. (university representative), McGinnis, Karen M. (committee member), Deng, Wu-Min (committee member), Bass, Hank W. (committee member), Florida State University (degree granting institution), College of Arts and Sciences (degree granting college), Department of Biological Science (degree granting departmentdgg) |
Publisher | Florida State University |
Source Sets | Florida State University |
Language | English, English |
Detected Language | English |
Type | Text, text, doctoral thesis |
Format | 1 online resource (91 pages), computer, application/pdf |
Page generated in 0.002 seconds