Regulation of gene expression by RNA polymerase (RNAP) is an essential ability of living organisms, required for their adaption to a changing environment and ultimately enabling their survival. Interaction of RNAP with ribonucleic acids (DNA or RNA) is crucial for transcription and its regulation. This Doctoral Thesis contains two projects addressing interactions of RNAP with nucleic acids: (i) Transcription of modified DNA templates and (ii) Ms1, a small RNA (sRNA) from M. smegmatis. (i) We investigated the influence of modifications in the major groove of DNA on bacterial transcription in vitro. We found out that transcription of modified DNA templates is influenced on the transcription initiation level and that the promoter sequence is important for the effect of the modifications. Furthermore, we successfully performed transcription switch ON and OFF in vitro by bioorthogonal reactions. This regulation of transcription by artificial DNA modifications has a future in biotechnologies and/or medical therapy. (ii) Regulators of transcription are also small non-coding RNAs. These molecules have an important role in gene expression regulation among prokaryotes and eukaryotes. Ms1 is an sRNA found in mycobacteria. It makes a complex with the RNAP core and it is abundant in stationary phase (in amounts...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:405419 |
Date | January 2019 |
Creators | Janoušková, Martina |
Contributors | Krásný, Libor, Vopálenský, Václav, Knejzlík, Zdeněk |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0016 seconds